ﻻ يوجد ملخص باللغة العربية
In cloud computing, software-defined network (SDN) gaining more attention due to its advantages in network configuration to improve network performance and network monitoring. SDN addresses an issue of static architecture in traditional networks by allowing centralised control of a network system. SDN contains centralised network intelligence module which separates a process of forwarding packets (data plane) from packet routing process (control plane). It is essential to ensure the correctness of SDN due to secure data transmitting in it. In this paper. Model-checking is chosen to verify an SDN network. The Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) used as a specification to express properties of an SDN. Then complete SDN structure is defined formally along with its Kripke structure. Finally, temporal properties are analysed against the SDN Kripke model to assure the properties of SDN is correct.
Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to p
Traditionally, fault- or event-tree analyses or FMEAs have been used to estimate the probability of a safety-critical device creating a dangerous condition. However, these analysis techniques are less effective for systems primarily reliant on softwa
In Software Product Line Engineering (SPLE), a portfolio of similar systems is developed from a shared set of software assets. Claimed benefits of SPLE include reductions in the portfolio size, cost of software development and time to production, as
Software defined networking (SDN) has been adopted to enforce the security of large-scale and complex networks because of its programmable, abstract, centralized intelligent control and global and real-time traffic view. However, the current SDN-base
Formal Verification (FV) and Machine Learning (ML) can seem incompatible due to their opposite mathematical foundations and their use in real-life problems: FV mostly relies on discrete mathematics and aims at ensuring correctness; ML often relies on