ﻻ يوجد ملخص باللغة العربية
The saturated state of turbulence driven by the ion-temperature-gradient instability is investigated using a two-dimensional long-wavelength fluid model that describes the perturbed electrostatic potential and perturbed ion temperature in a magnetic field with constant curvature (a $Z$-pinch) and an equilibrium temperature gradient. Numerical simulations reveal a well-defined transition between a finite-amplitude saturated state dominated by strong zonal-flow and zonal-temperature perturbations, and a blow-up state that fails to saturate on a box-independent scale. We argue that this transition is equivalent to the Dimits transition from a low-transport to a high-transport state seen in gyrokinetic numerical simulations. A quasi-static staircase-like structure of the temperature gradient intertwined with zonal flows, which have patch-wise constant shear, emerges near the Dimits threshold. The turbulent heat flux in the low-collisionality near-marginal state is dominated by turbulent bursts, triggered by coherent long-lived structures closely resembling those found in gyrokinetic simulations with imposed equilibrium flow shear. The break up of the low-transport Dimits regime is linked to a competition between the two different sources of poloidal momentum in the system -- the Reynolds stress and the advection of the diamagnetic flow by the $boldsymbol{E}timesboldsymbol{B}$ flow. By analysing the linear ITG modes, we obtain a semi-analytic model for the Dimits threshold at large collisionality.
The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 01403
We study the effect of turbulent transport in different magnetic configurations of the Weldenstein 7-X stellarator. In particular, we performed direct numerical simulations with the global gyrokinetic code GENE-3D, modeling the behavior of Ion Temper
We consider the general problem of charged particle motion in a strong electromagnetic field of arbitrary configuration and find a universal behaviour: for sufficiently high field strengths, the radiation losses lead to a general tendency of the char
The tertiary instability is believed to be important for governing magnetised plasma turbulence under conditions of strong zonal flow generation, near marginal stability. In this work, we investigate its role for a collisionless strongly driven fluid
In the present paper the transport of impurities driven by trapped electron (TE) mode turbulence is studied. Non-linear (NL) gyrokinetic simulations using the code GENE are compared with results from quasilinear (QL) gyrokinetic simulations and a com