ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the Dimits shift through reduced mode tertiary instability analysis in a strongly driven gyrokinetic fluid limit

94   0   0.0 ( 0 )
 نشر من قبل Axel Hallenbert
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tertiary instability is believed to be important for governing magnetised plasma turbulence under conditions of strong zonal flow generation, near marginal stability. In this work, we investigate its role for a collisionless strongly driven fluid model, self-consistently derived as a limit of gyrokinetics. It is found that a region of absolute stability above the linear threshold exists, beyond which significant nonlinear transport rapidly develops. While within this range a complex pattern of transient zonal evolution is observed before a stable profile is found, the Dimits transition itself is found to coincide with a tertiary instability threshold so long as linear effects are included. Through a simple and readily extendable procedure tracing its origin to St-Onge 2017 (arXiv:1704.05406) the stabilising effect of the typical zonal profile can be approximated and the accompanying reduced mode estimate is found to be in good agreement with nonlinear simulations.



قيم البحث

اقرأ أيضاً

The influence of viscosity gradient (due to shear flow) on low frequency collective modes in strongly coupled dusty plasma is analyzed. It is shown that for a well known viscoelastic plasma model, the velocity shear dependent viscosity leads to an in stability of the shear mode. The inhomogeneous viscous force and velocity shear coupling supply the free energy for the instability. The combined strength of shear flow and viscosity gradient wins over any stabilizing force and makes the shear mode unstable. Implication of such a novel instability and its applications are briefly outlined.
In continuation of previous work, numerical results are presented, concerning relativistically counter-streaming plasmas. Here, the relativistic mixed mode instability evolves through, and beyond, the linear saturation -- well into the nonlinear regi me. Besides confirming earlier findings, that wave power initially peaks on the mixed mode branch, it is observed that, during late time evolution wave power is transferred to other wave numbers. It is argued that the isotropization of power in wavenumber space may be a consequence of weak turbulence. Further, some modifications to the ideal weak turbulence limit is observed. Development of almost isotropic predominantly electrostatic -- partially electromagnetic -- turbulent spectra holds relevance when considering the spectral emission signatures of the plasma, namely bremsstrahlung, respectively magneto-bremsstrahlung (synchrotron radiation and jitter radiation) from relativistic shocks in astrophysical jets and shocks from gamma-ray bursts and active galactic nuclei.
Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures, and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.
A key uncertainty in the design and development of magnetic confinement fusion energy reactors is predicting edge plasma turbulence. An essential step in overcoming this uncertainty is the validation in accuracy of reduced turbulent transport models. Drift-reduced Braginskii two-fluid theory is one such set of reduced equations that has for decades simulated boundary plasmas in experiment, but significant questions exist regarding its predictive ability. To this end, using a novel physics-informed deep learning framework, we demonstrate the first ever direct quantitative comparisons of turbulent field fluctuations between electrostatic two-fluid theory and electromagnetic gyrokinetic modelling with good overall agreement found in magnetized helical plasmas at low normalized pressure. This framework is readily adaptable to experimental and astrophysical environments, and presents a new technique for the numerical validation and discovery of reduced global plasma turbulence models.
The saturated state of turbulence driven by the ion-temperature-gradient instability is investigated using a two-dimensional long-wavelength fluid model that describes the perturbed electrostatic potential and perturbed ion temperature in a magnetic field with constant curvature (a $Z$-pinch) and an equilibrium temperature gradient. Numerical simulations reveal a well-defined transition between a finite-amplitude saturated state dominated by strong zonal-flow and zonal-temperature perturbations, and a blow-up state that fails to saturate on a box-independent scale. We argue that this transition is equivalent to the Dimits transition from a low-transport to a high-transport state seen in gyrokinetic numerical simulations. A quasi-static staircase-like structure of the temperature gradient intertwined with zonal flows, which have patch-wise constant shear, emerges near the Dimits threshold. The turbulent heat flux in the low-collisionality near-marginal state is dominated by turbulent bursts, triggered by coherent long-lived structures closely resembling those found in gyrokinetic simulations with imposed equilibrium flow shear. The break up of the low-transport Dimits regime is linked to a competition between the two different sources of poloidal momentum in the system -- the Reynolds stress and the advection of the diamagnetic flow by the $boldsymbol{E}timesboldsymbol{B}$ flow. By analysing the linear ITG modes, we obtain a semi-analytic model for the Dimits threshold at large collisionality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا