ﻻ يوجد ملخص باللغة العربية
The tertiary instability is believed to be important for governing magnetised plasma turbulence under conditions of strong zonal flow generation, near marginal stability. In this work, we investigate its role for a collisionless strongly driven fluid model, self-consistently derived as a limit of gyrokinetics. It is found that a region of absolute stability above the linear threshold exists, beyond which significant nonlinear transport rapidly develops. While within this range a complex pattern of transient zonal evolution is observed before a stable profile is found, the Dimits transition itself is found to coincide with a tertiary instability threshold so long as linear effects are included. Through a simple and readily extendable procedure tracing its origin to St-Onge 2017 (arXiv:1704.05406) the stabilising effect of the typical zonal profile can be approximated and the accompanying reduced mode estimate is found to be in good agreement with nonlinear simulations.
The influence of viscosity gradient (due to shear flow) on low frequency collective modes in strongly coupled dusty plasma is analyzed. It is shown that for a well known viscoelastic plasma model, the velocity shear dependent viscosity leads to an in
In continuation of previous work, numerical results are presented, concerning relativistically counter-streaming plasmas. Here, the relativistic mixed mode instability evolves through, and beyond, the linear saturation -- well into the nonlinear regi
Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory
A key uncertainty in the design and development of magnetic confinement fusion energy reactors is predicting edge plasma turbulence. An essential step in overcoming this uncertainty is the validation in accuracy of reduced turbulent transport models.
The saturated state of turbulence driven by the ion-temperature-gradient instability is investigated using a two-dimensional long-wavelength fluid model that describes the perturbed electrostatic potential and perturbed ion temperature in a magnetic