ﻻ يوجد ملخص باللغة العربية
The scalar-tensor theory can be formulated in both Jordan and Einstein frames, which are conformally related together with a redefinition of the scalar field. As the solution to the equation of the scalar field in the Jordan frame does not have the one-to-one correspondence with that in the Einstein frame, we give a criterion along with some specific models to check if the scalar field in the Einstein frame is viable or not by confirming whether this field is reversible back to the Jordan frame. We further show that the criterion in the first parameterized post-Newtonian approximation can be determined by the parameters of the osculating approximation of the coupling function in the Einstein frame and can be treated as a viable constraint on any numerical study in the scalar-tensor scenario. We also demonstrate that the Brans-Dicke theory with an infinite constant parameter $omega_{text{BD}}$ is a counterexample of the equivalence between two conformal frames due to the violation of the viable constraint.
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow-moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted b
Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectr
We investigate linear and non-linear dynamics of spherically symmetric perturbations on a static configuration in scalar-tensor theories focusing on the chameleon screening mechanism. We particularly address two questions: how much the perturbations
We present a scalar-tensor theory of gravity on a torsion-free and metric compatible Lyra manifold. This is obtained by generalizing the concept of physical reference frame by considering a scale function defined over the manifold. The choice of a sp
A gravity theory called scalar-tensor-vector gravity (STVG) has been recently developed and succeeded in solar system, astrophysical and cosmological scales without dark matter [J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006)]. However, two