ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Analysis of Screening in Scalar-Tensor Theory

119   0   0.0 ( 0 )
 نشر من قبل Tomohiro Nakamura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate linear and non-linear dynamics of spherically symmetric perturbations on a static configuration in scalar-tensor theories focusing on the chameleon screening mechanism. We particularly address two questions: how much the perturbations can source the fifth force when the static background is well screened, and whether the resultant fifth force can change the stability and structure of the background configuration. For linear perturbations, we derive a lower bound for the square of the Fourier mode frequency $omega^2$ using the adiabatic approximation. There may be unstable modes if this lower bound is negative, and we find that the condition of the instability can be changed by the fifth force although this effect is suppressed by the screening parameter. For non-linear perturbations, because we are mainly interested in short wavelength modes for which the fifth force may become stronger, we perform numerical simulations under the planar approximation. For a sufficiently large initial amplitude of the density perturbation, we find that the magnitude of the fifth force can be comparable to that of Newtonian gravity even when the model parameters are chosen so that the static background is well screened. It is also shown that if the screening is effective for the static background, the fluid dynamics is mostly governed by the pressure gradient and is not significantly affected by the fifth force.

قيم البحث

اقرأ أيضاً

The scalar-tensor theory can be formulated in both Jordan and Einstein frames, which are conformally related together with a redefinition of the scalar field. As the solution to the equation of the scalar field in the Jordan frame does not have the o ne-to-one correspondence with that in the Einstein frame, we give a criterion along with some specific models to check if the scalar field in the Einstein frame is viable or not by confirming whether this field is reversible back to the Jordan frame. We further show that the criterion in the first parameterized post-Newtonian approximation can be determined by the parameters of the osculating approximation of the coupling function in the Einstein frame and can be treated as a viable constraint on any numerical study in the scalar-tensor scenario. We also demonstrate that the Brans-Dicke theory with an infinite constant parameter $omega_{text{BD}}$ is a counterexample of the equivalence between two conformal frames due to the violation of the viable constraint.
85 - Qasem Exirifard 2011
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow-moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted b y the Einstein-Hilbert theory leads to a relation between the vector and scalar coupling constants of the theory. We observe that requiring consistency between the near horizon geometry of a black hole in TeVeS and the image of the black hole taken Event Horizon Telescope leads to another relation between the coupling constants of the TeVeS theory and enable us to identify the coupling constants of the theory.
The scalar tensor theory contains a coupling function connecting the quantities in the Jordan and Einstein frames, which is constrained to guarantee a transformation rule between frames. We simulate the supernovae core collapse with different choices of coupling functions defined over the viable region of the parameter space and find that a generic inverse-chirp feature of the gravitational waves in the scalar tensor scenario.
91 - Jiaming Shi , Taotao Qiu 2020
In this paper, we discuss about the possibility to enhance the tensor-to-scalar ratio $r$ under the condition of Trans-Planckian censorship conjecture (TCC), thus $rsim O(10^{-3})$ could be observable within the sensitivity of future experiments. We make use of the scalar-tensor theory where inflaton is nonminimally coupled to gravity. After demonstrating that the TCC condition could be modified in scalar-tensor theory, we show that due to the effects of modified gravity at the end of inflation, a large $rsim O(10^{-3})$ could be allowed without violating the TCC. Moreover, the modification can give rise to a weak coupling of gravity to the inflation field. If such an effect has been present as early as inflation starts, it would imply that in our case, the Universe might have experienced an asymptotically safe period at its early time.
We present a scalar-tensor theory of gravity on a torsion-free and metric compatible Lyra manifold. This is obtained by generalizing the concept of physical reference frame by considering a scale function defined over the manifold. The choice of a sp ecific frame induces a local base, naturally non-holonomic, whose structure constants give rise to extra terms in the expression of the connection coefficients and in the expression for the covariant derivative. In the Lyra manifold, transformations between reference frames involving both coordinates and scale change the transformation law of tensor fields, when compared to those of the Riemann manifold. From a direct generalization of the Einstein-Hilbert minimal action coupled with a matter term, it was possible to build a Lyra invariant action, which gives rise to the associated Lyra Scalar-Tensor theory of gravity (LyST), with field equations for $g_{mu u}$ and $phi$. These equations have a well-defined Newtonian limit, from which it can be seen that both metric and scale play a role in the description gravitational interaction. We present a spherically symmetric solution for the LyST gravity field equations. It dependent on two parameters $m$ and $r_{L}$, whose physical meaning is carefully investigated. We highlight the properties of LyST spherically symmetric line element and compare it to Schwarzchild solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا