ترغب بنشر مسار تعليمي؟ اضغط هنا

Technical Report: Adaptive Control for Linearizable Systems Using On-Policy Reinforcement Learning

157   0   0.0 ( 0 )
 نشر من قبل Tyler Westenbroek
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a framework for adaptively learning a feedback linearization-based tracking controller for an unknown system using discrete-time model-free policy-gradient parameter update rules. The primary advantage of the scheme over standard model-reference adaptive control techniques is that it does not require the learned inverse model to be invertible at all instances of time. This enables the use of general function approximators to approximate the linearizing controller for the system without having to worry about singularities. However, the discrete-time and stochastic nature of these algorithms precludes the direct application of standard machinery from the adaptive control literature to provide deterministic stability proofs for the system. Nevertheless, we leverage these techniques alongside tools from the stochastic approximation literature to demonstrate that with high probability the tracking and parameter errors concentrate near zero when a certain persistence of excitation condition is satisfied. A simulated example of a double pendulum demonstrates the utility of the proposed theory. 1

قيم البحث

اقرأ أيضاً

Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between task s or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.
This paper considers policy search in continuous state-action reinforcement learning problems. Typically, one computes search directions using a classic expression for the policy gradient called the Policy Gradient Theorem, which decomposes the gradi ent of the value function into two factors: the score function and the Q-function. This paper presents four results:(i) an alternative policy gradient theorem using weak (measure-valued) derivatives instead of score-function is established; (ii) the stochastic gradient estimates thus derived are shown to be unbiased and to yield algorithms that converge almost surely to stationary points of the non-convex value function of the reinforcement learning problem; (iii) the sample complexity of the algorithm is derived and is shown to be $O(1/sqrt(k))$; (iv) finally, the expected variance of the gradient estimates obtained using weak derivatives is shown to be lower than those obtained using the popular score-function approach. Experiments on OpenAI gym pendulum environment show superior performance of the proposed algorithm.
244 - Ge Liu , Rui Wu , Heng-Tze Cheng 2020
Deep Reinforcement Learning (RL) is proven powerful for decision making in simulated environments. However, training deep RL model is challenging in real world applications such as production-scale health-care or recommender systems because of the ex pensiveness of interaction and limitation of budget at deployment. One aspect of the data inefficiency comes from the expensive hyper-parameter tuning when optimizing deep neural networks. We propose Adaptive Behavior Policy Sharing (ABPS), a data-efficient training algorithm that allows sharing of experience collected by behavior policy that is adaptively selected from a pool of agents trained with an ensemble of hyper-parameters. We further extend ABPS to evolve hyper-parameters during training by hybridizing ABPS with an adapted version of Population Based Training (ABPS-PBT). We conduct experiments with multiple Atari games with up to 16 hyper-parameter/architecture setups. ABPS achieves superior overall performance, reduced variance on top 25% agents, and equivalent performance on the best agent compared to conventional hyper-parameter tuning with independent training, even though ABPS only requires the same number of environmental interactions as training a single agent. We also show that ABPS-PBT further improves the convergence speed and reduces the variance.
370 - Pei Xu , Ioannis Karamouzas 2020
Controlling the movements of highly articulated agents and robots has been a long-standing challenge to model-free deep reinforcement learning. In this paper, we propose a simple, yet general, framework for improving the performance of policy gradien t algorithms by discretizing the continuous action space. Instead of using a fixed set of predetermined atomic actions, we exploit particle filtering to adaptively discretize actions during training and track the posterior policy distribution represented as a mixture of Gaussians. The resulting policy can replace the original continuous policy of any given policy gradient algorithm without changing its underlying model architecture. We demonstrate the applicability of our approach to state-of-the-art on-policy and off-policy baselines in challenging control tasks. Baselines using our particle-based policies achieve better final performance and speed of convergence as compared to corresponding continuous implementations and implementations that rely on fixed discretization schemes.
126 - Yongli Zhu 2021
This paper proposes a cascading failure mitigation strategy based on Reinforcement Learning (RL). The motivation of the Multi-Stage Cascading Failure (MSCF) problem and its connection with the challenge of climate change are introduced. The bottom-le vel corrective control of the MCSF problem is formulated based on DCOPF (Direct Current Optimal Power Flow). Then, to mitigate the MSCF issue by a high-level RL-based strategy, physics-informed reward, action, and state are devised. Besides, both shallow and deep neural network architectures are tested. Experiments on the IEEE 118-bus system by the proposed mitigation strategy demonstrate a promising performance in reducing system collapses.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا