ﻻ يوجد ملخص باللغة العربية
We report new high-quality galaxy scale strong lens candidates found in the Kilo Degree Survey data release 4 using Machine Learning. We have developed a new Convolutional Neural Network (CNN) classifier to search for gravitational arcs, following the prescription by cite{2019MNRAS.484.3879P} and using only $r-$band images. We have applied the CNN to two predictive samples: a Luminous red galaxy (LRG) and a bright galaxy (BG) sample ($r<21$). We have found 286 new high probability candidates, 133 from the LRG sample and 153 from the BG sample. We have then ranked these candidates based on a value that combines the CNN likelihood to be a lens and the human score resulting from visual inspection (P-value) and we present here the highest 82 ranked candidates with P-values $ge 0.5$. All these high-quality candidates have obvious arc or point-like features around the central red defector. Moreover, we define the best 26 objects, all with scores P-values $ge 0.7$ as a golden sample of candidates. This sample is expected to contain very few false positives and thus it is suitable for follow-up observations. The new lens candidates come partially from the the more extended footprint adopted here with respect to the previous analyses, partially from a larger predictive sample (also including the BG sample). These results show that machine learning tools are very promising to find strong lenses in large surveys and more candidates that can be found by enlarging the predictive samples beyond the standard assumption of LRGs. In the future, we plan to apply our CNN to the data from next-generation surveys such as the Large Synoptic Survey Telescope, Euclid, and the Chinese Space Station Optical Survey.
The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyze sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectabl
We present the results of our first year of quasar search in the on-going ESO public Kilo Degree Survey (KiDS) and VISTA Kilo-Degree Infrared Galaxy (VIKING) surveys. These surveys are among the deeper wide-field surveys that can be used to uncovered
The Kilo Degree Survey (KiDS) is a 1500 square degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST). A suite of data products will be delivered to the European Southern Observatory
We have carried out a systematic search for galaxy-scale strong lenses in multiband imaging from the Hyper Suprime-Cam (HSC) survey. Our automated pipeline, based on realistic strong-lens simulations, deep neural network classification, and visual in
We present a new sample of galaxy-scale strong gravitational-lens candidates, selected from 904 square degrees of Data Release 4 of the Kilo-Degree Survey (KiDS), i.e., the Lenses in the Kilo-Degree Survey (LinKS) sample. We apply two Convolutional N