ﻻ يوجد ملخص باللغة العربية
The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyze sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in $255$ square degrees of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii $gtrsim 1.4$ arcsec, about twice the $r$-band seeing in KiDS. In a sample of $21789$ colour-magnitude selected Luminous Red Galaxies (LRG), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find $sim100$ massive LRG-galaxy lenses at $zlsim 0.4$ in KiDS when completed. In the most optimistic scenario this number can grow considerably (to maximally $sim$2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.
We present a new sample of galaxy-scale strong gravitational-lens candidates, selected from 904 square degrees of Data Release 4 of the Kilo-Degree Survey (KiDS), i.e., the Lenses in the Kilo-Degree Survey (LinKS) sample. We apply two Convolutional N
Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies fro
We search Dark Energy Survey (DES) Year 3 imaging data for galaxy-galaxy strong gravitational lenses using convolutional neural networks. We generate 250,000 simulated lenses at redshifts > 0.8 from which we create a data set for training the neural
We present a sample of 16 likely strong gravitational lenses identified in the VST Optical Imaging of the CDFS and ES1 fields (VOICE survey) using Convolutional Neural Networks (CNNs). We train two different CNNs on composite images produced by super
We perform a semi-automated search for strong gravitational lensing systems in the 9,000 deg$^2$ Dark Energy Camera Legacy Survey (DECaLS), part of the DESI Legacy Imaging Surveys (Dey et al.). The combination of the depth and breadth of these survey