ﻻ يوجد ملخص باللغة العربية
The Gukov-Manolescu series, denoted by $F_K$, is a conjectural invariant of knot complements that, in a sense, analytically continues the colored Jones polynomials. In this paper we use the large color $R$-matrix to study $F_K$ for some simple links. Specifically, we give a definition of $F_K$ for positive braid knots, and compute $F_K$ for various knots and links. As a corollary, we present a class of `strange identities for positive braid knots.
The physical 3d $mathcal{N}=2$ theory T[Y] was previously used to predict the existence of some 3-manifold invariants $hat{Z}_{a}(q)$ that take the form of power series with integer coefficients, converging in the unit disk. Their radial limits at th
We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold $Y(K_1,K_2)$ obtained by splicing the complements of the knots $K_isubset Y_i$, $i=1,2$, in terms of the knot Floer homology of $K_1$ and $K_2$. We also present a
Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, $Phi (c)$, such that if $K$ is a nontrivial knot i
For an arbitrary positive integer $n$ and a pair $(p, q)$ of coprime integers, consider $n$ copies of a torus $(p,q)$ knot placed parallel to each other on the surface of the corresponding auxiliary torus: we call this assembly a torus $n$-link. We c
For an arbitrary identity L=R between compositions of maps L and R on tensors of vector spaces V, a general construction of a 2-cocycle condition is given. These 2-cocycles correspond to those obtained in deformation theories of algebras. The constru