ﻻ يوجد ملخص باللغة العربية
Intelligent reflecting surface (IRS) is a promising technology to support high performance wireless communication. By adaptively configuring the reflection amplitude and/or phase of each passive reflecting element on it, the IRS can reshape the electromagnetic environment in favour of signal transmission. This letter advances the existing research by proposing and analyzing a double-IRS aided wireless communication system. Under the reasonable assumption that the reflection channel from IRS 1 to IRS 2 is of rank 1 (e.g., line-of-sight channel), we propose a joint passive beamforming design for the two IRSs. Based on this, we show that deploying two cooperative IRSs with in total K elements can yield a power gain of order O(K^4), which greatly outperforms the case of deploying one traditional IRS with a power gain of order O(K^2). Our simulation results validate that the performance of deploying two cooperative IRSs is significantly better than that of deploying one IRS given a sufficient total number of IRS elements. We also extend our line-of-sight channel model to show how different channel models affect the performance of the double-IRS aided wireless communication system.
We study the beamforming optimization for an intelligent reflecting surface (IRS)-aided full-duplex (FD) communication system in this letter. Specifically, we maximize the sum rate of bi-directional transmissions by jointly optimizing the transmit be
This paper investigates the passive beamforming and deployment design for an intelligent reflecting surface (IRS) aided full-duplex (FD) wireless system, where an FD access point (AP) communicates with an uplink (UL) user and a downlink (DL) user sim
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN
Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. I
This paper investigates a joint beamforming design in a multiuser multiple-input single-output (MISO) communication network aided with an intelligent reflecting surface (IRS) panel. The symbol-level precoding (SLP) is adopted to enhance the system pe