ﻻ يوجد ملخص باللغة العربية
We study the beamforming optimization for an intelligent reflecting surface (IRS)-aided full-duplex (FD) communication system in this letter. Specifically, we maximize the sum rate of bi-directional transmissions by jointly optimizing the transmit beamforming and the beamforming of the IRS reflection. A fast converging alternating algorithm is developed to tackle this problem. In each iteration of the proposed algorithm, the solutions to the transmit beamforming and the IRS reflect beamforming are obtained in a semi-closed form and a closed form, respectively. Compared to an existing method based on the Arimoto-Blahut algorithm, the proposed method achieves almost the same performance while enjoying much faster convergence and lower computational complexity.
This paper investigates the passive beamforming and deployment design for an intelligent reflecting surface (IRS) aided full-duplex (FD) wireless system, where an FD access point (AP) communicates with an uplink (UL) user and a downlink (DL) user sim
This paper studies intelligent reflecting surface (IRS)-aided full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) broadcasts energy signals to multiple devices for their energy harvesting in the downlink
Intelligent reflecting surface (IRS) is a promising technology to support high performance wireless communication. By adaptively configuring the reflection amplitude and/or phase of each passive reflecting element on it, the IRS can reshape the elect
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking int
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN