ﻻ يوجد ملخص باللغة العربية
In this paper, we give an explicit formula of Chevalley type, in terms of the Bruhat graph, for the quantum multiplication with the class of the line bundle associated to the anti-dominant minuscule fundamental weight $- varpi_{k}$ in the torus-equivariant quantum $K$-group of the partial flag manifold $G/P_{J}$ (where $J = I setminus {k}$) corresponding to the maximal (standard) parabolic subgroup $P_{J}$ of minuscule type in type $A$, $D$, $E$, or $B$. This result is obtained by proving a similar formula in a torus-equivariant $K$-group of the semi-infinite partial flag manifold $mathbf{Q}_{J}$ of minuscule type, and then by making use of the isomorphism between the torus-equivariant quantum $K$-group of $G/P_{J}$ and the torus-equivariant $K$-group of $mathbf{Q}_{J}$, recently established by Kato.
We prove a Pieri-Chevalley formula for anti-dominant weights and also a Monk formula in the torus-equivariant $K$-group of the formal power series model of semi-infinite flag manifolds, both of which are described explicitly in terms of semi-infinite
We propose a definition of equivariant (with respect to an Iwahori subgroup) $K$-theory of the formal power series model $mathbf{Q}_{G}$ of semi-infinite flag manifold and prove the Pieri-Chevalley formula, which describes the product, in the $K$-the
We prove an explicit inverse Chevalley formula in the equivariant $K$-theory of semi-infinite flag manifolds of simply-laced type. By an inverse Chevalley formula, we mean a formula for the product of an equivariant scalar with a Schubert class, expr
We give a combinatorial Chevalley formula for an arbitrary weight, in the torus-equivariant $K$-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for anti
We give a combinatorial Chevalley formula for an arbitrary weight, in the torus-equivariant K-theory of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for anti-