ﻻ يوجد ملخص باللغة العربية
We give a combinatorial Chevalley formula for an arbitrary weight, in the torus-equivariant K-theory of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for anti-dominant fundamental weights in the (small) torus-equivariant quantum K-theory of the flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of the mentioned quantum K-theory. Moreover, in type A, we prove that the so-called quantum Grothendieck polynomials indeed represent Schubert classes in the (non-equivariant) quantum K-theory of the corresponding flag manifold.
We give a combinatorial Chevalley formula for an arbitrary weight, in the torus-equivariant $K$-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for anti
We propose a definition of equivariant (with respect to an Iwahori subgroup) $K$-theory of the formal power series model $mathbf{Q}_{G}$ of semi-infinite flag manifold and prove the Pieri-Chevalley formula, which describes the product, in the $K$-the
We prove a Pieri-Chevalley formula for anti-dominant weights and also a Monk formula in the torus-equivariant $K$-group of the formal power series model of semi-infinite flag manifolds, both of which are described explicitly in terms of semi-infinite
We prove an explicit inverse Chevalley formula in the equivariant $K$-theory of semi-infinite flag manifolds of simply-laced type. By an inverse Chevalley formula, we mean a formula for the product of an equivariant scalar with a Schubert class, expr
In this paper, we give an explicit formula of Chevalley type, in terms of the Bruhat graph, for the quantum multiplication with the class of the line bundle associated to the anti-dominant minuscule fundamental weight $- varpi_{k}$ in the torus-equiv