ﻻ يوجد ملخص باللغة العربية
The origin of intrinsic quantum criticality in the heavy-fermion superconductor $beta$-YbAlB$_4$ has been attributed to strong Yb valence fluctuations and its peculiar crystal structure. Here, we assess these contributions individually by studying the isostructural but fixed-valence compound $beta$-LuAlB$_4$. Quantum oscillation measurements and DFT calculations reveal a Fermi surface markedly different from that of $beta$-YbAlB$_4$, consistent with a `large Fermi surface there. We also find an unexpected in-plane anisotropy of the electronic structure, in contrast to the isotropic Kondo hybridization in $beta$-YbAlB$_4$.
Recently, intriguing physical properties have been unraveled in anisotropic layered semiconductors with the in-plane anisotropy often originates directly from the low crystallographic symmetry. However, little has been known about the systems where t
We report on the in-plane anisotropy of the electronic response in the spin/charge/orbital ordered phase of a half-doped layered-structure manganite. The optical conductivity spectra for a single domain of Eu$_{1/2}$% Ca$_{3/2}$MnO$_{4}$ unambiguousl
The importance of electronic correlation effects in the layered perovskite Sr$_2$RuO$_4$ is evidenced. To this end we use state-of-the-art LDA+DMFT (Local Density Approximation + Dynamical Mean-Field Theory) in the basis of Wannier functions to compu
Using the state-of-art dynamical mean-field theory combined with density functional theory method, we have performed systematic study on the temperature and pressure dependent electronic structure of ferromagnetic quantum critical material candidate
The anisotropic magnetic properties of Sr$_2$IrO$_4$ are investigated, using longitudinal and torque magnetometry. The critical scaling across $T_c$ of the longitudinal magnetization is the one expected for the 2D XY universality class. Modeling the