ﻻ يوجد ملخص باللغة العربية
Spin-reorientation phase transitions that involve the rotation of a crystal$$s magnetization have been well characterized in distorted-perovskite oxides such as the orthoferrites. In these systems spin reorientation occurs due to competing rare-earth and transition metal anisotropies coupled via $f$-$d$ exchange. Here, we demonstrate an alternative paradigm for spin reorientation in distorted perovskites. We show that the $R_2mathrm{CuMnMn_4O_{12}}$ (R = Y or Dy) triple A-site columnar-ordered quadruple perovskites have three ordered magnetic phases and up to two spin-reorientation phase transitions. Unlike the spin-reorientation phenomena in other distorted perovskites, these transitions are independent of rare-earth magnetism, but are instead driven by an instability towards antiferromagnetic spin canting likely originating in frustrated Heisenberg exchange interactions, and the competition between Dzyaloshinskii-Moriya and single-ion anisotropies.
We theoretically describe the behavior of a terahertz nano-oscillator based on an anisotropic antiferromagnetic dynamical element driven by spin torque. We consider the situation when the polarization of the spin-current is perpendicular to the exter
Magnetism arising from coupled spin and spatial degrees of freedom underlies the properties of a broad array of physical systems. We study here the interplay between correlations in spin and space for the quantum compass model in a finite external fi
The theory behind the electrical switching of antiferromagnets is premised on the existence of a well defined broken symmetry state that can be rotated to encode information. A spin glass is in many ways the antithesis of this state, characterized by
Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquid, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner sharing sq
The Cu spin magnetism in La2-x-yEuySrxCuO4 (x<=0.17; y<=0.2) has been studied by means of magnetization measurements up to 14 T. Our results clearly show that in the antiferromagnetic phase Dzyaloshinsky-Moriya (DM)superexchange causes Cu spin cantin