ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic Antiferromagnetic Nano-Oscillator driven by Spin-Torque

104   0   0.0 ( 0 )
 نشر من قبل Volodymyr Kravchuk P.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically describe the behavior of a terahertz nano-oscillator based on an anisotropic antiferromagnetic dynamical element driven by spin torque. We consider the situation when the polarization of the spin-current is perpendicular to the external magnetic field applied along the anisotropy easy-axis. We determine the domain of the parametric space (field, current) where the oscillator demonstrates chaotic dynamics. Characteristics of the chaotic regimes are analyzed using conventional techniques such as spectra of the Lyapunov exponents. We show that the threshold current of the chaos appearance is particularly low in the vicinity of the spin-flop transition. In this regime, we consider the mechanism of the chaos appearance in detail when the field is fixed and the current density increases. We show that the appearance of chaos is preceded by a regime of quasiperiodic dynamics on the surface of a two-frequency torus arising in phase space as a result of the Neimark-Sacker bifurcation.

قيم البحث

اقرأ أيضاً

A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. A macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular to the film plane. By tuning the delay and amplification of the self-injected signal, we identify dynamical regimes in this system such as chaos, switching between precession modes with complex transients, and oscillator death. Such delayed feedback schemes open up a new field of exploration for such oscillators, where the complex transient states might find important applications in information processing.
Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extende d ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality - a ferromagnetic nanowire. We observe coherent self-oscillations of magnetization in a ferromagnetic nanowire serving as the active region of a spin torque oscillator driven by spin orbit torques. Our work demonstrates that magnetization self-oscillations can be excited in a one-dimensional magnetic system and that dimensions of the active region of spin torque oscillators can be extended beyond the nanometer length scale.
Spin torque and spin Hall effect nanooscillators generate high intensity spin wave auto oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices requ ire externally generated spin currents either from an additional ferromagnetic layer or a material with a high spin Hall angle. Here we demonstrate highly coherent field and current tunable microwave signals from nanoconstrictions in single 15 and 20 nm thick permalloy layers. Using a combination of spin torque ferromagnetic resonance measurements, scanning microBrillouin light scattering microscopy, and micromagnetic simulations, we identify the autooscillations as emanating from a localized edge mode of the nanoconstriction driven by spin orbit torques. Our results pave the way for greatly simplified designs of auto oscillating nanomagnetic systems only requiring a single ferromagnetic layer.
Spin-reorientation phase transitions that involve the rotation of a crystal$$s magnetization have been well characterized in distorted-perovskite oxides such as the orthoferrites. In these systems spin reorientation occurs due to competing rare-earth and transition metal anisotropies coupled via $f$-$d$ exchange. Here, we demonstrate an alternative paradigm for spin reorientation in distorted perovskites. We show that the $R_2mathrm{CuMnMn_4O_{12}}$ (R = Y or Dy) triple A-site columnar-ordered quadruple perovskites have three ordered magnetic phases and up to two spin-reorientation phase transitions. Unlike the spin-reorientation phenomena in other distorted perovskites, these transitions are independent of rare-earth magnetism, but are instead driven by an instability towards antiferromagnetic spin canting likely originating in frustrated Heisenberg exchange interactions, and the competition between Dzyaloshinskii-Moriya and single-ion anisotropies.
We use He$^+$ irradiation to tune the nonlinearity, $mathcal{N}$, of all-perpendicular spin-torque nano-oscillators (STNOs) using the He$^+$ fluence-dependent perpendicular magnetic anisotropy (PMA) of the [Co/Ni] free layer. Employing fluences from 6 to 20$times10^{14}$~He$^{+}$/cm$^{2}$, we are able to tune $mathcal{N}$ in an in-plane field from strongly positive to moderately negative. As the STNO microwave signal properties are mainly governed by $mathcal{N}$, we can in this way directly control the threshold current, the current tunability of the frequency, and the STNO linewidth. In particular, we can dramatically improve the latter by more than two orders of magnitude. Our results are in good agreement with the theory for nonlinear auto-oscillators, confirm theoretical predictions of the role of nonlinearity, and demonstrate a straightforward path towards improving the microwave properties of STNOs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا