ترغب بنشر مسار تعليمي؟ اضغط هنا

Action-angle coordinates on coadjoint orbits and multiplicity free spaces from partial tropicalization

91   0   0.0 ( 0 )
 نشر من قبل Benjamin Hoffman
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Coadjoint orbits and multiplicity free spaces of compact Lie groups are important examples of symplectic manifolds with Hamiltonian groups actions. Constructing action-angle variables on these spaces is a challenging task. A fundamental result in the field is the Guillemin-Sternberg construction of Gelfand-Zeitlin integrable systems for the groups $K=U(n), SO(n)$. Extending these results to groups of other types is one of the goals of this paper. Partial tropicalizations are Poisson spaces with constant Poisson bracket built using techniques of Poisson-Lie theory and the geometric crystals of Berenstein-Kazhdan. They provide a bridge between dual spaces of Lie algebras ${rm Lie}(K)^*$ with linear Poisson brackets and polyhedral cones which parametrize the canonical bases of irreducible modules of $G=K^mathbb{C}$. We generalize the construction of partial tropicalizations to allow for arbitrary cluster charts, and apply it to questions in symplectic geometry. For each regular coadjoint orbit of a compact group $K$, we construct an exhaustion by symplectic embeddings of toric domains. As a by product we arrive at a conjectured formula for Gromov width of regular coadjoint orbits. We prove similar results for multiplicity free $K$-spaces.



قيم البحث

اقرأ أيضاً

84 - Jeremy Lane 2020
Actions of $U(n)$ on $U(n+1)$ coadjoint orbits via embeddings of $U(n)$ into $U(n+1)$ are an important family of examples of multiplicity free spaces. They are related to Gelfand-Zeitlin completely integrable systems and multiplicity free branching r ules in representation theory. This paper computes the Hamiltonian local normal forms of all such actions, at arbitrary points, in arbitrary $U(n+1)$ coadjoint orbits. The results are described using combinatorics of interlacing patterns; gadgets that describe the associated Kirwan polytopes.
43 - B. Khesin 2002
We show that the following three systems related to various hydrodynamical approximations: the Korteweg--de Vries equation, the Camassa--Holm equation, and the Hunter--Saxton equation, have the same symmetry group and similar bihamiltonian structures . It turns out that their configuration space is the Virasoro group and all three dynamical systems can be regarded as equations of the geodesic flow associated to different right-invariant metrics on this group or on appropriate homogeneous spaces. In particular, we describe how Arnolds approach to the Euler equations as geodesic flows of one-sided invariant metrics extends from Lie groups to homogeneous spaces. We also show that the above three cases describe all generic bihamiltonian systems which are related to the Virasoro group and can be integrated by the translation argument principle: they correspond precisely to the three different types of generic Virasoro orbits.
We prove that the Gromov width of coadjoint orbits of the symplectic group is at least equal to the upper bound known from the works of Zoghi and Caviedes. This establishes the actual Gromov width. Our work relies on a toric degeneration of a coadjoi nt orbit to a toric variety. The polytope associated to this toric variety is a string polytope arising from a string parametrization of elements of a crystal basis for a certain representation of the symplectic group.
137 - Andres Vi~na 2009
Let $G$ be a reductive Lie group and ${mathcal O}$ the coadjoint orbit of a hyperbolic element of ${frak g}^*$. By $pi$ is denoted the unitary irreducible representation of $G$ associated with ${mathcal O}$ by the orbit method. We give geometric inte rpretations in terms of concepts related to ${mathcal O}$ of the constant $pi(g)$, for $gin Z(G)$. We also offer a description of the invariant $pi(g)$ in terms of action integrals and Berry phases. In the spirit of the orbit method we interpret geometrically the infinitesimal character of the differential representation of $pi$.
For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $omega_xi^s$, where $xi in mathfrak{t}^*_+$ is in the positive Weyl chamber and $s in mathbb{R}$. The symplectic form $omega_xi^0$ is identified wit h the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $xi$. The cohomology class of $omega_xi^s$ is independent of $s$ for a fixed value of $xi$. In this paper, we show that as $sto -infty$, the symplectic volume of $omega_xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا