ﻻ يوجد ملخص باللغة العربية
We show that the following three systems related to various hydrodynamical approximations: the Korteweg--de Vries equation, the Camassa--Holm equation, and the Hunter--Saxton equation, have the same symmetry group and similar bihamiltonian structures. It turns out that their configuration space is the Virasoro group and all three dynamical systems can be regarded as equations of the geodesic flow associated to different right-invariant metrics on this group or on appropriate homogeneous spaces. In particular, we describe how Arnolds approach to the Euler equations as geodesic flows of one-sided invariant metrics extends from Lie groups to homogeneous spaces. We also show that the above three cases describe all generic bihamiltonian systems which are related to the Virasoro group and can be integrated by the translation argument principle: they correspond precisely to the three different types of generic Virasoro orbits.
For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $omega_xi^s$, where $xi in mathfrak{t}^*_+$ is in the positive Weyl chamber and $s in mathbb{R}$. The symplectic form $omega_xi^0$ is identified wit
Coadjoint orbits and multiplicity free spaces of compact Lie groups are important examples of symplectic manifolds with Hamiltonian groups actions. Constructing action-angle variables on these spaces is a challenging task. A fundamental result in the
Multi-component integrable generalizations of the Fokas-Lenells equation, associated with each irreducible Hermitian symmetric space are formulated. Description of the underlying structures associated to the integrability, such as the Lax representat
Consider Yudovich solutions to the incompressible Euler equations with bounded initial vorticity in bounded planar domains or in $mathbb{R}^2$. We present a purely Lagrangian proof that the solution map is strongly continuous in $L^p$ for all $pin [1
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence