ترغب بنشر مسار تعليمي؟ اضغط هنا

Valence quark ratio in the proton

106   0   0.0 ( 0 )
 نشر من قبل Craig Roberts
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Beginning with precise data on the ratio of structure functions in deep inelastic scattering (DIS) from $^3$He and $^3$H, collected on the domain $0.19 leq x_B leq 0.83$, where $x_B$ is the Bjorken scaling variable, we employ a robust method for extrapolating such data to arrive at a model-independent result for the $x_B=1$ value of the ratio of neutron and proton structure functions. Combining this with information obtained in analyses of DIS from nuclei, corrected for target-structure dependence, we arrive at a prediction for the protons valence-quark ratio: $left. d_v/u_v right|_{x_Bto 1} = 0.230 (57)$. Requiring consistency with this result presents a challenge to many descriptions of proton structure.



قيم البحث

اقرأ أيضاً

We compute the helicity-dependent strange quark distribution in the proton in the framework of chiral effective theory. Starting from the most general chiral SU(3) Lagrangian that respects Lorentz and gauge invariance, we derive the complete set of h adronic splitting functions at the one meson loop level, including the octet and decuplet rainbow, tadpole, Kroll-Ruderman and octet-decuplet transition configurations. By matching hadronic and quark level operators, we obtain generalized convolution formulas for the quark distributions in the proton in terms of hadronic splitting functions and quark distributions in the hadronic configurations, and from these derive model-independent relations for the leading nonanalytic behavior of their moments. Within the limits of parameters of the Pauli-Villars regulators derived from inclusive hyperon production, we find that the polarized strange quark distribution is rather small and mostly negative.
107 - G. Ramalho , Kazuo Tsushima 2010
Using a covariant spectator quark model we estimate valence quark contributions to the F1*(Q2) and F2*(Q2) transition form factors for the gamma N -> P11(1440) reaction. The Roper resonance, P11(1440), is assumed to be the first radial excitation of the nucleon. The present model requires no extra parameters except for those already fixed by the previous studies for the nucleon. Our results are consistent with the experimental data in the high Q2 region, and those from lattice QCD. We also estimate the meson cloud contributions, focusing on the low Q2 region, where they are expected to be dominant.
We present an improved determination of the strange quark and anti-quark parton distribution functions of the proton by means of a global QCD analysis that takes into account a comprehensive set of strangeness-sensitive measurements: charm-tagged cro ss sections for fixed-target neutrino-nucleus deep-inelastic scattering, and cross sections for inclusive gauge-boson production and $W$-boson production in association with light jets or charm quarks at hadron colliders. Our analysis is accurate to next-to-next-to leading order in perturbative QCD where available, and specifically includes charm-quark mass corrections to neutrino-nucleus structure functions. We find that a good overall description of the input dataset can be achieved and that a strangeness moderately suppressed in comparison to the rest of the light sea quarks is strongly favored by the global analysis.
Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valenc e distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoret ical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا