ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding Dark Matter Faster with Explicit Profile Likelihoods

231   0   0.0 ( 0 )
 نشر من قبل Bart Pelssers
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Liquid xenon time-projection chambers are the worlds most sensitive detectors for a wide range of dark matter candidates. We show that the statistical analysis of their data can be improved by replacing detector response Monte Carlo simulations with an equivalent deterministic calculation. This allows the use of high-dimensional undiscretized models, yielding up to $sim! 2$ times better discrimination of the dominant backgrounds. In turn, this could significantly extend the physics reach of upcoming experiments such as XENONnT and LZ, and bring forward a potential $5 sigma$ dark matter discovery by over a year.



قيم البحث

اقرأ أيضاً

The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $beta$/$gamma$ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related $alpha$ backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10$^{-46}$ cm$^2$ will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
129 - Xilei Sun , Junguang Lu , Tao Hu 2011
The luminescent properties of CsI(Na) crystals are studied in this report. By using a TDS3054C oscilloscope with a sampling frequency of 5 GS/s, we find out that nuclear recoil signals are dominated by very fast light pulse with a decay time of ~20 n s, while {gamma}-ray signals have a decay time of ~600 ns. The wavelength of nuclear recoil and {gamma}-ray signals are also different. The study of n/{gamma} separation shows that the rejection factor can reach an order of 10-7 with signal efficiency more than 80% at an equivalent electron recoil energy of 20 keV or more. Such a property makes CsI(Na) an ideal candidate for dark matter searches.
We present the first search for a dark matter annual modulation signal in the Southern Hemisphere conducted with NaI(Tl) detectors, performed by the DM-Ice17 experiment. Nuclear recoils from dark matter interactions are expected to yield an annually modulated signal independent of location within the Earths hemispheres. DM-Ice17, the first step in the DM-Ice experimental program, consists of 17 kg of NaI(Tl) located at the South Pole under 2200 m.w.e. overburden of Antarctic glacial ice. Taken over 3.6 years for a total exposure of 60.8 kg yr, DM-Ice17 data are consistent with no modulation in the energy range of 4-20 keV, providing the strongest limits on weakly interacting massive particle dark matter from a direct detection experiment located in the Southern Hemisphere. The successful deployment and stable long-term operation of DM-Ice17 establishes the South Pole ice as a viable location for future dark matter searches and in particular for a high-sensitivity NaI(Tl) dark matter experiment to directly test the DAMA/LIBRA claim of the observation of dark matter.
259 - Jay Hyun Jo 2016
DM-Ice is a phased experimental program using low-background NaI(Tl) crystals with the aim to unambiguously test the claim of dark matter detection by the DAMA experiments. DM-Ice17, consisting of 17 kg of NaI(Tl), has been continuously operating at a depth of 2457 m in the South Pole ice for over five years, demonstrating the feasibility of a low-background experiment in the Antarctic ice. Studies of low and high energy spectra, an annual modulation analysis, and a WIMP exclusion limit based on the physics run of DM-Ice17 are presented. We also discuss the plan and projected sensitivity of a new joint physics run, COSINE-100, with upgraded detectors at the Yangyang Underground Laboratory in Korea.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا