ترغب بنشر مسار تعليمي؟ اضغط هنا

On a minimum enclosing ball of a collection of linear subspaces

90   0   0.0 ( 0 )
 نشر من قبل Nicolas Gillis
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper concerns the minimax center of a collection of linear subspaces. When the subspaces are $k$-dimensional subspaces of $mathbb{R}^n$, this can be cast as finding the center of a minimum enclosing ball on a Grassmann manifold, Gr$(k,n)$. For subspaces of different dimension, the setting becomes a disjoint union of Grassmannians rather than a single manifold, and the problem is no longer well-defined. However, natural geometric maps exist between these manifolds with a well-defined notion of distance for the images of the subspaces under the mappings. Solving the initial problem in this context leads to a candidate minimax center on each of the constituent manifolds, but does not inherently provide intuition about which candidate is the best representation of the data. Additionally, the solutions of different rank are generally not nested so a deflationary approach will not suffice, and the problem must be solved independently on each manifold. We propose and solve an optimization problem parametrized by the rank of the minimax center. The solution is computed using a subgradient algorithm on the dual. By scaling the objective and penalizing the information lost by the rank-$k$ minimax center, we jointly recover an optimal dimension, $k^*$, and a central subspace, $U^* in$ Gr$(k^*,n)$ at the center of the minimum enclosing ball, that best represents the data.



قيم البحث

اقرأ أيضاً

Weight initialization plays an important role in training neural networks and also affects tremendous deep learning applications. Various weight initialization strategies have already been developed for different activation functions with different n eural networks. These initialization algorithms are based on minimizing the variance of the parameters between layers and might still fail when neural networks are deep, e.g., dying ReLU. To address this challenge, we study neural networks from a nonlinear computation point of view and propose a novel weight initialization strategy that is based on the linear product structure (LPS) of neural networks. The proposed strategy is derived from the polynomial approximation of activation functions by using theories of numerical algebraic geometry to guarantee to find all the local minima. We also provide a theoretical analysis that the LPS initialization has a lower probability of dying ReLU comparing to other existing initialization strategies. Finally, we test the LPS initialization algorithm on both fully connected neural networks and convolutional neural networks to show its feasibility, efficiency, and robustness on public datasets.
77 - Jun Lu 2021
This survey is meant to provide an introduction to the fundamental theorem of linear algebra and the theories behind them. Our goal is to give a rigorous introduction to the readers with prior exposure to linear algebra. Specifically, we provide some details and proofs of some results from (Strang, 1993). We then describe the fundamental theorem of linear algebra from different views and find the properties and relationships behind the views. The fundamental theorem of linear algebra is essential in many fields, such as electrical engineering, computer science, machine learning, and deep learning. This survey is primarily a summary of purpose, significance of important theories behind it. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in theory behind the fundamental theorem of linear algebra and rigorous analysis in order to seamlessly introduce its properties in four subspaces in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results and given the paucity of scope to present this discussion, e.g., the separated analysis of the (orthogonal) projection matrices. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields. Some excellent examples include (Rose, 1982; Strang, 2009; Trefethen and Bau III, 1997; Strang, 2019, 2021).
The minimum degree algorithm is one of the most widely-used heuristics for reducing the cost of solving large sparse systems of linear equations. It has been studied for nearly half a century and has a rich history of bridging techniques from data st ructures, graph algorithms, and scientific computing. In this paper, we present a simple but novel combinatorial algorithm for computing an exact minimum degree elimination ordering in $O(nm)$ time, which improves on the best known time complexity of $O(n^3)$ and offers practical improvements for sparse systems with small values of $m$. Our approach leverages a careful amortized analysis, which also allows us to derive output-sensitive bounds for the running time of $O(min{msqrt{m^+}, Delta m^+} log n)$, where $m^+$ is the number of unique fill edges and original edges that the algorithm encounters and $Delta$ is the maximum degree of the input graph. Furthermore, we show there cannot exist an exact minimum degree algorithm that runs in $O(nm^{1-varepsilon})$ time, for any $varepsilon > 0$, assuming the strong exponential time hypothesis. This fine-grained reduction goes through the orthogonal vectors problem and uses a new low-degree graph construction called $U$-fillers, which act as pathological inputs and cause any minimum degree algorithm to exhibit nearly worst-case performance. With these two results, we nearly characterize the time complexity of computing an exact minimum degree ordering.
We describe a numerical scheme for evaluating the posterior moments of Bayesian linear regression models with partial pooling of the coefficients. The principal analytical tool of the evaluation is a change of basis from coefficient space to the spac e of singular vectors of the matrix of predictors. After this change of basis and an analytical integration, we reduce the problem of finding moments of a density over k + m dimensions, to finding moments of an m-dimensional density, where k is the number of coefficients and k + m is the dimension of the posterior. Moments can then be computed using, for example, MCMC, the trapezoid rule, or adaptive Gaussian quadrature. An evaluation of the SVD of the matrix of predictors is the dominant computational cost and is performed once during the precomputation stage. We demonstrate numerical results of the algorithm. The scheme described in this paper generalizes naturally to multilevel and multi-group hierarchical regression models where normal-normal parameters appear.
Given $n$ points in a $d$ dimensional Euclidean space, the Minimum Enclosing Ball (MEB) problem is to find the ball with the smallest radius which contains all $n$ points. We give a $O(ndQcal/sqrt{epsilon})$ approximation algorithm for producing an e nclosing ball whose radius is at most $epsilon$ away from the optimum (where $Qcal$ is an upper bound on the norm of the points). This improves existing results using emph{coresets}, which yield a $O(nd/epsilon)$ greedy algorithm. Finding the Minimum Enclosing Convex Polytope (MECP) is a related problem wherein a convex polytope of a fixed shape is given and the aim is to find the smallest magnification of the polytope which encloses the given points. For this problem we present a $O(mndQcal/epsilon)$ approximation algorithm, where $m$ is the number of faces of the polytope. Our algorithms borrow heavily from convex duality and recently developed techniques in non-smooth optimization, and are in contrast with existing methods which rely on geometric arguments. In particular, we specialize the excessive gap framework of citet{Nesterov05a} to obtain our results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا