ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametric attosecond pulse amplification far from the ionization threshold from high order harmonic generation in He$^+$

80   0   0.0 ( 0 )
 نشر من قبل Carles Serrat
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parametric amplification of attosecond coherent pulses around 100 eV at the single-atom level is demonstrated for the first time by using the 3D time-dependent Schr{o}dinger equation in high-harmonic generation processes from excited states of He$^+$. We present the attosecond dynamics of the amplification process far from the ionization threshold and resolve the physics behind it. The amplification of a particular central photon energy requires the seed XUV pulses to be perfectly synchronized in time with the driving laser field for stimulated recombination to the He$^+$ ground state and is only produced in a few specific laser cycles in agreement with the experimental measurements. Our simulations show that the amplified photon energy region can be controlled by varying the peak intensity of the laser field. Our results pave the way to the realization of compact attosecond pulse intense XUV lasers with broad applications.



قيم البحث

اقرأ أيضاً

High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz f ields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half-cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single atom response yields an attosecond pulse train.
289 - T. Ruchon , C. P. Hauri , K. Varju 2007
We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significan tly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of self-compressed attosecond pulses. We show this effect experimentally, using long argon-filled gas cells as generating medium.
78 - O. Hort 2020
We observe a new regime of coherent XUV radiation generation in noble gases induced by femtosecond pulses at very high intensities. This XUV emission has both a reduced divergence and spectral width as compared to high-order harmonic generation (HHG) . It is not emitted at a moderate intensity of the driving pulses where only high-order harmonics are generated. At high driving intensities, the additional XUV comb appears near all harmonic orders and even exceeds the HHG signal on the axis. The peaks are observed in several gases and their frequencies do not depend on the driving intensity or gas pressure. We analyze the divergence, spectral width and spectral shift of this XUV emission. We show that these specific features are well explained by high-order parametric generation (HPG) involving multiphoton absorption and combined emission of an idler THz radiation and an XUV beam with remarkably smooth spatial and spectral characteristics.
A promising alternative to Gaussian beams for use in strong field science is Bessel-Gauss (BG or Bessel-like) laser beams as they are easily produced with readily available optics and provide more flexibility of the spot size and working distances. H ere we use BG beams produced with a lens-axicon optical system for higher order harmonic generation (HHG) in a thin gas jet. The finite size of the interaction region allows for scans of the HHG yield along the propagation axis. Further, by measuring the ionization yield in unison with the extreme ultraviolet (XUV) we are able to distinguish regions of maximum ionization from regions of optimum XUV generation. This distinction is of great importance for BG fields as the generation of BG beams with axicons often leads to oscillations of the on-axis intensity, which can be exploited for extended phase matching conditions. We observed such oscillations in the ionization and XUV flux along the propagation axis for the first time. As it is the case for Gaussian modes, the harmonic yield is not maximum at the point of highest ionization. Finally, despite Bessel beams having a hole in the center in the far field, the XUV beam is well collimated making BG modes a great alternative when spatial filtering of the fundamental is desired.
High-harmonic generation (HHG) provides short-wavelength light that is useful for precision spectroscopy and probing ultrafast dynamics. We report efficient, phase-coherent harmonic generation up to 9th-order (333 nm) in chirped periodically poled li thium niobate waveguides driven by phase-stable $leq$12-nJ, 100 fs pulses at 3 $mu$m with 100 MHz repetition rate. A mid-infrared to ultraviolet-visible conversion efficiency as high as 10% is observed, amongst an overall 23% conversion of the fundamental to all harmonics. We verify the coherence of the harmonic frequency combs despite the complex highly nonlinear process. Numerical simulations based on a single broadband envelope equation with quadratic nonlinearity give estimates for the conversion efficiency within approximately 1 order of magnitude over a wide range of experimental parameters. From this comparison we identify a dimensionless parameter capturing the competition between three-wave mixing and group-velocity walk-off of the harmonics that governs the cascaded HHG physics. These results can inform cascaded HHG in a range of different platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا