ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband ultraviolet-visible frequency combs from cascaded high-harmonic generation in quasi-phase-matched waveguides

152   0   0.0 ( 0 )
 نشر من قبل Tom Allison
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-harmonic generation (HHG) provides short-wavelength light that is useful for precision spectroscopy and probing ultrafast dynamics. We report efficient, phase-coherent harmonic generation up to 9th-order (333 nm) in chirped periodically poled lithium niobate waveguides driven by phase-stable $leq$12-nJ, 100 fs pulses at 3 $mu$m with 100 MHz repetition rate. A mid-infrared to ultraviolet-visible conversion efficiency as high as 10% is observed, amongst an overall 23% conversion of the fundamental to all harmonics. We verify the coherence of the harmonic frequency combs despite the complex highly nonlinear process. Numerical simulations based on a single broadband envelope equation with quadratic nonlinearity give estimates for the conversion efficiency within approximately 1 order of magnitude over a wide range of experimental parameters. From this comparison we identify a dimensionless parameter capturing the competition between three-wave mixing and group-velocity walk-off of the harmonics that governs the cascaded HHG physics. These results can inform cascaded HHG in a range of different platforms.



قيم البحث

اقرأ أيضاً

Laser-driven high-order harmonic generation (HHG) provides tabletop sources of broadband extreme-ultraviolet (XUV) light with excellent spatial and temporal coherence. These sources are typically operated at low repetition rates, $f_{rep}lesssim$100 kHz, where phase-matched frequency conversion into the XUV is readily achieved. However, there are many applications that demand the improved counting statistics or frequency-comb precision afforded by operation at high repetition rates, $f_{rep}$ > 10 MHz. Unfortunately, at such high $f_{rep}$, phase matching is prevented by the accumulated steady-state plasma in the generation volume, setting stringent limitations on the XUV average power. Here, we use gas mixtures at high temperatures as the generation medium to increase the translational velocity of the gas, thereby reducing the steady-state plasma in the laser focus. This allows phase-matched XUV emission inside a femtosecond enhancement cavity at a repetition rate of 77 MHz, enabling a record generated power of $sim$2 mW in a single harmonic order. This power scaling opens up many demanding applications, including XUV frequency-comb spectroscopy of few-electron atoms and ions for precision tests of fundamental physical laws and constants.
Supercontinuum generation in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations o f the waveguide structure provides a useful mechanism to control the evolution of ultrafast pulses and the supercontinuum spectrum. We experimentally demonstrate quasi-phase-matched supercontinuum to the TE20 and TE00 waveguide modes, which enhances the intensity of the SCG in specific spectral regions by as much as 20 dB. We utilize higher-order quasi-phase-matching (up to the 16th order) to enhance the intensity in numerous locations across the spectrum. Quasi-phase-matching adds a unique dimension to the design-space for SCG waveguides, allowing the spectrum to be engineered for specific applications.
Low propagation loss in high confinement waveguides is critical for chip-based nonlinear photonics applications. Sophisticated fabrication processes which yield sub-nm roughness are generally needed to reduce scattering points at the waveguide interf aces in order to achieve ultralow propagation loss. Here, we show ultralow propagation loss by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 $pm$ 4.4 million are experimentally demonstrated. Although the microresonators support 10 transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record-low threshold pump power of 73 $mu$W for parametric oscillation is measured and a broadband, almost octave spanning single-soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 nm to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that could be applied to different material platforms to achieve and use ultrahigh-Q multimode microresonators.
We observe second harmonic generation via random quasi-phase-matching in a 2.0 mu m periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.
Optical waveguides made from periodically poled materials provide high confinement of light and enable the generation of new wavelengths via quasi-phase-matching, making them a key platform for nonlinear optics and photonics. However, such devices ar e not typically employed for high-harmonic generation. Here, using 200-fs, 10-nJ-level pulses of 4100 nm light at 1 MHz, we generate high harmonics up to the 13th harmonic (315 nm) in a chirped, periodically poled lithium niobate (PPLN) waveguide. Total conversion efficiencies into the visible--ultraviolet region are as high as 10 percent. We find that the output spectrum depends on the waveguide poling period, indicating that quasi-phase-matching plays a significant role. In the future, such periodically poled waveguides may enable compact sources of ultrashort pulses at high repetition rates and provide new methods of probing the electronic structure of solid-state materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا