ترغب بنشر مسار تعليمي؟ اضغط هنا

Contact Tracing Mobile Apps for COVID-19: Privacy Considerations and Related Trade-offs

349   0   0.0 ( 0 )
 نشر من قبل Yun William Yu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Contact tracing is an essential tool for public health officials and local communities to fight the spread of novel diseases, such as for the COVID-19 pandemic. The Singaporean government just released a mobile phone app, TraceTogether, that is designed to assist health officials in tracking down exposures after an infected individual is identified. However, there are important privacy implications of the existence of such tracking apps. Here, we analyze some of those implications and discuss ways of ameliorating the privacy concerns without decreasing usefulness to public health. We hope in writing this document to ensure that privacy is a central feature of conversations surrounding mobile contact tracing apps and to encourage community efforts to develop alternative effective solutions with stronger privacy protection for the users. Importantly, though we discuss potential modifications, this document is not meant as a formal research paper, but instead is a response to some of the privacy characteristics of direct contact tracing apps like TraceTogether and an early-stage Request for Comments to the community. Date written: 2020-03-24 Minor correction: 2020-03-30

قيم البحث

اقرأ أيضاً

How to contain the spread of the COVID-19 virus is a major concern for most countries. As the situation continues to change, various countries are making efforts to reopen their economies by lifting some restrictions and enforcing new measures to pre vent the spread. In this work, we review some approaches that have been adopted to contain the COVID-19 virus such as contact tracing, clusters identification, movement restrictions, and status validation. Specifically, we classify available techniques based on some characteristics such as technology, architecture, trade-offs (privacy vs utility), and the phase of adoption. We present a novel approach for evaluating privacy using both qualitative and quantitative measures of privacy-utility assessment of contact tracing applications. In this new method, we classify utility at three (3) distinct levels: no privacy, 100% privacy, and at k where k is set by the system providing the utility or privacy.
The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some rem ain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals. However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability. In this article, we provide the first comprehensive review of these much-discussed tracing app attributes. We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage. We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large.
65 - Lucy Simko 2020
There is growing interest in technology-enabled contact tracing, the process of identifying potentially infected COVID-19 patients by notifying all recent contacts of an infected person. Governments, technology companies, and research groups alike re cognize the potential for smartphones, IoT devices, and wearable technology to automatically track close contacts and identify prior contacts in the event of an individuals positive test. However, there is currently significant public discussion about the tensions between effective technology-based contact tracing and the privacy of individuals. To inform this discussion, we present the results of a sequence of online surveys focused on contact tracing and privacy, each with 100 participants. Our first surveys were on April 1 and 3, and we report primarily on those first two surveys, though we present initial findings from later survey dates as well. Our results present the diversity of public opinion and can inform the public discussion on whether and how to leverage technology to reduce the spread of COVID-19. We are continuing to conduct longitudinal measurements, and will update this report over time; citations to this version of the report should reference Report Version 1.0, May 8, 2020. NOTE: As of December 4, 2020, this report has been superseded by Report Version 2.0, found at arXiv:2012.01553. Please read and cite Report Version 2.0 instead.
In this paper, we propose a new privacy-preserving, automated contact tracing system, ACOUSTIC-TURF, to fight COVID-19 using acoustic signals sent from ubiquitous mobile devices. At a high level, ACOUSTIC-TURF adaptively broadcasts inaudible ultrason ic signals with randomly generated IDs in the vicinity. Simultaneously, the system receives other ultrasonic signals sent from nearby (e.g., 6 feet) users. In such a system, individual user IDs are not disclosed to others and the system can accurately detect encounters in physical proximity with 6-foot granularity. We have implemented a prototype of ACOUSTIC-TURF on Android and evaluated its performance in terms of acoustic-signal-based encounter detection accuracy and power consumption at different ranges and under various occlusion scenarios. Experimental results show that ACOUSTIC-TURF can detect multiple contacts within a 6-foot range for mobile phones placed in pockets and outside pockets. Furthermore, our acoustic-signal-based system achieves greater precision than wireless-signal-based approaches when contact tracing is performed through walls. ACOUSTIC-TURF correctly determines that people on opposite sides of a wall are not in contact with one another, whereas the Bluetooth-based approaches detect nonexistent contacts among them.
Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as enterin g into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا