ﻻ يوجد ملخص باللغة العربية
Response to uniaxial stress has become a major probe of electronic materials. Tuneable uniaxial stress may be applied using piezoelectric actuators, and so far two methods have been developed to couple samples to actuators. In one, actuators apply force along the length of a free, beam-like sample, allowing very large strains to be achieved. In the other, samples are affixed directly to piezoelectric actuators, allowing study of mechanically delicate materials. Here, we describe an approach that merges the two: thin samples are affixed to a substrate, that is then pressurized uniaxially using piezoelectric actuators. Using this approach, we demonstrate application of large elastic strains to mechanically delicate samples: the van der Waals-bonded material FeSe, and a sample of CeAuSb$_2$ that was shaped with a focused ion beam.
The realization of ordered strain fields in two-dimensional crystals is an intriguing perspective in many respects, including the instauration of novel transport regimes and the achievement of enhanced device performances. In this work, we demonstrat
Several pn junctions were constructed from mechanically exfoliated ultrawide bandgap (UWBG) beta-phase gallium oxide (b{eta}-Ga2O3) and p-type gallium nitride (GaN). The mechanical exfoliation process, which is described in detail, is similar to that
We develop a thermally tunable hybrid photonic platform comprising gallium arsenide (GaAs) photonic crystal cavities, silicon nitride (SiN$_x$) grating couplers and waveguides, and chromium (Cr) microheaters on an integrated photonic chip. The GaAs p
The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices which can be safely ingested, along with pills or even food,
The recent advent of two-dimensional monolayer materials with tunable optoelectronic properties and high carrier mobility offers renewed opportunities for efficient, ultra-thin excitonic solar cells alternative to those based on conjugated polymer an