ﻻ يوجد ملخص باللغة العربية
The recent advent of two-dimensional monolayer materials with tunable optoelectronic properties and high carrier mobility offers renewed opportunities for efficient, ultra-thin excitonic solar cells alternative to those based on conjugated polymer and small molecule donors. Using first-principles density functional theory and many-body calculations, we demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with commonly used acceptors such as PCBM fullerene or semiconducting carbon nanotubes can provide excitonic solar cells with tunable absorber gap, donor-acceptor interface band alignment, and power conversion efficiency, as well as novel device architectures. For the case of CBN-PCBM devices, we predict the limit of power conversion efficiencies to be in the 10 - 20% range depending on the CBN monolayer structure. Our results demonstrate the possibility of using monolayer materials in tunable, efficient, polymer-free thin-film solar cells in which unexplored exciton and carrier transport regimes are at play.
The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tun
Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have
We investigate Landau-quantized excitonic absorption and luminescence of monolayer WSe$_2$ under magnetic field. We observe gate-dependent quantum oscillations in the bright exciton and trions (or exciton-polarons) as well as the dark trions and thei
Due to degeneracies arising from crystal symmetries, it is possible for electron states at band edges (valleys) to have additional spin-like quantum numbers. An important question is whether coherent manipulation can be performed on such valley pseud
The ingredients normally required to achieve topological superconductivity (TSC) are Cooper pairing, broken inversion symmetry, and broken time-reversal symmetry. We present a theoretical exploration of the possibility of using ultra-thin films of su