ترغب بنشر مسار تعليمي؟ اضغط هنا

ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for Deep Learning

295   0   0.0 ( 0 )
 نشر من قبل Vinay Joshi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) have surpassed human-level accuracy in a variety of cognitive tasks but at the cost of significant memory/time requirements in DNN training. This limits their deployment in energy and memory limited applications that require real-time learning. Matrix-vector multiplications (MVM) and vector-vector outer product (VVOP) are the two most expensive operations associated with the training of DNNs. Strategies to improve the efficiency of MVM computation in hardware have been demonstrated with minimal impact on training accuracy. However, the VVOP computation remains a relatively less explored bottleneck even with the aforementioned strategies. Stochastic computing (SC) has been proposed to improve the efficiency of VVOP computation but on relatively shallow networks with bounded activation functions and floating-point (FP) scaling of activation gradients. In this paper, we propose ESSOP, an efficient and scalable stochastic outer product architecture based on the SC paradigm. We introduce efficient techniques to generalize SC for weight update computation in DNNs with the unbounded activation functions (e.g., ReLU), required by many state-of-the-art networks. Our architecture reduces the computational cost by re-using random numbers and replacing certain FP multiplication operations by bit shift scaling. We show that the ResNet-32 network with 33 convolution layers and a fully-connected layer can be trained with ESSOP on the CIFAR-10 dataset to achieve baseline comparable accuracy. Hardware design of ESSOP at 14nm technology node shows that, compared to a highly pipelined FP16 multiplier design, ESSOP is 82.2% and 93.7% better in energy and area efficiency respectively for outer product computation.

قيم البحث

اقرأ أيضاً

We propose K-TanH, a novel, highly accurate, hardware efficient approximation of popular activation function TanH for Deep Learning. K-TanH consists of parameterized low-precision integer operations, such as, shift and add/subtract (no floating point operation needed) where parameters are stored in very small look-up tables that can fit in CPU registers. K-TanH can work on various numerical formats, such as, Float32 and BFloat16. High quality approximations to other activation functions, e.g., Sigmoid, Swish and GELU, can be derived from K-TanH. Our AVX512 implementation of K-TanH demonstrates $>5times$ speed up over Intel SVML, and it is consistently superior in efficiency over other approximations that use floating point arithmetic. Finally, we achieve state-of-the-art Bleu score and convergence results for training language translation model GNMT on WMT16 data sets with approximate TanH obtained via K-TanH on BFloat16 inputs.
Cancer is a complex disease, the understanding and treatment of which are being aided through increases in the volume of collected data and in the scale of deployed computing power. Consequently, there is a growing need for the development of data-dr iven and, in particular, deep learning methods for various tasks such as cancer diagnosis, detection, prognosis, and prediction. Despite recent successes, however, designing high-performing deep learning models for nonimage and nontext cancer data is a time-consuming, trial-and-error, manual task that requires both cancer domain and deep learning expertise. To that end, we develop a reinforcement-learning-based neural architecture search to automate deep-learning-based predictive model development for a class of representative cancer data. We develop custom building blocks that allow domain experts to incorporate the cancer-data-specific characteristics. We show that our approach discovers deep neural network architectures that have significantly fewer trainable parameters, shorter training time, and accuracy similar to or higher than those of manually designed architectures. We study and demonstrate the scalability of our approach on up to 1,024 Intel Knights Landing nodes of the Theta supercomputer at the Argonne Leadership Computing Facility.
Modern machine learning algorithms crucially rely on several design decisions to achieve strong performance, making the problem of Hyperparameter Optimization (HPO) more important than ever. Here, we combine the advantages of the popular bandit-based HPO method Hyperband (HB) and the evolutionary search approach of Differential Evolution (DE) to yield a new HPO method which we call DEHB. Comprehensive results on a very broad range of HPO problems, as well as a wide range of tabular benchmarks from neural architecture search, demonstrate that DEHB achieves strong performance far more robustly than all previous HPO methods we are aware of, especially for high-dimensional problems with discrete input dimensions. For example, DEHB is up to 1000x faster than random search. It is also efficient in computational time, conceptually simple and easy to implement, positioning it well to become a new default HPO method.
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS). Although NAS methods can find network architectures with the state-of-the-art performance, the adversarial robustness and resource constraint are often ignored in NAS. To solve this problem, we propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration. The objective function of the proposed E2RNAS method is formulated as a bi-level multi-objective optimization problem with the upper-level problem as a multi-objective optimization problem, which is different from existing NAS methods. To solve the proposed objective function, we integrate the multiple-gradient descent algorithm, a widely studied gradient-based multi-objective optimization algorithm, with the bi-level optimization. Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
186 - Miao Zhang , Huiqi Li , Shirui Pan 2019
One-Shot Neural architecture search (NAS) attracts broad attention recently due to its capacity to reduce the computational hours through weight sharing. However, extensive experiments on several recent works show that there is no positive correlatio n between the validation accuracy with inherited weights from the supernet and the test accuracy after re-training for One-Shot NAS. Different from devising a controller to find the best performing architecture with inherited weights, this paper focuses on how to sample architectures to train the supernet to make it more predictive. A single-path supernet is adopted, where only a small part of weights are optimized in each step, to reduce the memory demand greatly. Furthermore, we abandon devising complicated reward based architecture sampling controller, and sample architectures to train supernet based on novelty search. An efficient novelty search method for NAS is devised in this paper, and extensive experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method. The best architecture obtained by our algorithm with the same search space achieves the state-of-the-art test error rate of 2.51% on CIFAR-10 with only 7.5 hours search time in a single GPU, and a validation perplexity of 60.02 and a test perplexity of 57.36 on PTB. We also transfer these search cell structures to larger datasets ImageNet and WikiText-2, respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا