ﻻ يوجد ملخص باللغة العربية
The soft dipole E1 strength function is calculated for the transition from the $^{6}$He $0^+$ ground state to the $1^-$ continuum $^{4}$He+$n$+$n$. The calculations were performed within the hyperspherical harmonics formalism. The sensitivity of the results to the $^{6}$He ground state structure and to final state interactions, are analyzed. The large-basis calculations show the reliably converged results for soft dipole strength function and for momentum correlations of the $^{6}mbox{He} rightarrow , ^{4}$He+$n$+$n$ dissociation products. Transition mechanisms are analyzed based on the momentum correlations. The comparison with experimental data is provided.
An analytical model is developed to study the spectra of electromagnetic dissociation of two-neutron halo nuclei without precise knowledge about initial and final states. Phenomenological three-cluster bound state wave functions, reproducing the most
Decay mode of the $2_1^+$ resonant state of $^6$He populated by the $^6$He breakup reaction by $^{12}$C at 240 MeV/nucleon is investigated. The continuum-discretized coupled-channels method is adopted to describe the formation of the $2_1^+$ state, w
The tunneling of composite systems, where breakup may occur during the barrier penetration process is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei on heavy targets. The large amount of recent and
The low-energy behavior of the strength function for the $1^-$ soft dipole excitation in $^{6}$He is studied theoretically. Use of very large basis sizes and well-grounded extrapolation procedures allows to move to energies as small as 1 keV, at whic
How to extract an electric dipole (E1) breakup cross section sigma(E1) from one- neutron removal cross sections measured by using 12C and 208Pb targets, sigma_(-1n)^C and sigma_(-1n)^Pb, respectively, is discussed. It is shown that within about 5% er