ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-body vs. dineutron approach to two-neutron radiative capture in $^{6}$He

67   0   0.0 ( 0 )
 نشر من قبل Leonid Grigorenko
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-energy behavior of the strength function for the $1^-$ soft dipole excitation in $^{6}$He is studied theoretically. Use of very large basis sizes and well-grounded extrapolation procedures allows to move to energies as small as 1 keV, at which the low-energy asymptotic behavior of the E1 strength function seems to be achieved. It is found that the low-energy behavior of the strength function is well described in the effective three-body dynamical dineutron model. The astrophysical rate for the $alpha$+$n$+$n rightarrow ^6$He+$gamma$ is calculated. Comparison with the previous calculations is performed.

قيم البحث

اقرأ أيضاً

The reaction mechanisms of the two-neutron transfer reaction $^{12}$C($^6$He,$^4$He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 2$^+_2$ 8.32 MeV state in $^{14}$C, using a realistic 3-body $^6$He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.
382 - L. Hlophe , Jin Lei , Ch. Elster 2017
{bf Background:} Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. {bf Purpose:} Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their solution based on separable interactions agrees exactly with solutions based on non-separable forces. {bf Results:} The ground state of $^6$Li is calculated via momentum space Faddeev equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-$^4$He force. For the latter the Pauli-forbidden $S$-wave bound state is projected out. This result is compared to a calculation in which the interactions in the two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler framework. {bf Conclusions:} We find that calculations based on the separable representation of the interactions and the original interactions give results that agree to four significant figures for the binding energy, provided an off-shell extension of the EST representation is employed in both subsystems. The momentum distributions computed in both approaches also fully agree with each other.
Recent investigations suggest that the neutrino--heated hot bubble between the nascent neutron star and the overlying stellar mantle of a type--II supernova may be the site of the r--process. In the preceding $alpha$--process building up the elements to $A approx 100$, the $^4$He(2n,$gamma$)$^6$He-- and $^6$He($alpha$,n)$^9$Be--reactions bridging the instability gap at $A=5$ and $A=8$ could be of relevance. We suggest a mechanism for $^4$He(2n,$gamma$)$^6$He and calculate the reaction rate within the $alpha$+n+n approach. The value obtained is about a factor 1.6 smaller than the one obtained recently in the simpler direct--capture model, but is at least three order of magnitude enhanced compared to the previously adopted value. Our calculation confirms the result of the direct--capture calculation that under representative conditions in the $alpha$--process the reaction path proceeding through $^6$He is negligible compared to $^4$He($alpha$n,$gamma$)$^9$Be.
Decay mode of the $2_1^+$ resonant state of $^6$He populated by the $^6$He breakup reaction by $^{12}$C at 240 MeV/nucleon is investigated. The continuum-discretized coupled-channels method is adopted to describe the formation of the $2_1^+$ state, w hereas its decay is described by the complex-scaled solutions of the Lippmann-Schwinger equation. From analysis of invariant mass spectra with respect to the $alpha$-$n$ and $n$-$n$ subsystems, coexistence of two decay modes is found. One is the simultaneous decay of two neutrons correlating with each other and the other is the emission of two neutrons to the opposite directions. The latter is found to be free from the final state interaction and suggests existence of a di-neutron in the $2_1^+$ state of $^6$He.
Emission of two neutrons or two protons in reactions and decays is often discussed in terms of dineutron or diproton emission. The discussion often leans intuitively on something described by Migdal-Watson approximation. In this work we propose a way to formalize situations of dineutron emission. It is demonstrated that properly formally defined dineutron emission may reveal properties which are drastically different from those traditionally expected, and properties which are actually observed in three-body decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا