ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaos-assisted tunneling resonances in a synthetic Floquet superlattice

86   0   0.0 ( 0 )
 نشر من قبل David Guery-Odelin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The field of quantum simulation, which aims at using a tunable quantum system to simulate another, has been developing fast in the past years as an alternative to the all-purpose quantum computer. In particular, the use of temporal driving has attracted a huge interest recently as it was shown that certain fast drivings can create new topological effects, while a strong driving leads to e.g. Anderson localization physics. In this work, we focus on the intermediate regime to observe a quantum chaos transport mechanism called chaos-assisted tunneling which provides new possibilities of control for quantum simulation. Indeed, this regime generates a rich classical phase space where stable trajectories form islands surrounded by a large sea of unstable chaotic orbits. This mimics an effective superlattice for the quantum states localized in the regular islands, with new controllable tunneling properties. Besides the standard textbook tunneling through a potential barrier, chaos-assisted tunneling corresponds to a much richer tunneling process where the coupling between quantum states located in neighboring regular islands is mediated by other states spread over the chaotic sea. This process induces sharp resonances where the tunneling rate varies by orders of magnitude over a short range of parameters. We experimentally demonstrate and characterize these resonances for the first time in a quantum system. This opens the way to new kinds of quantum simulations with long-range transport and new types of control of quantum systems through complexity.

قيم البحث

اقرأ أيضاً

Ergodicity and chaos play an integral role in the dynamical behavior of many-particle systems and are crucial to the formulation of statistical mechanics. Still, a general understanding of how randomness and chaos emerge in the dynamical evolution of closed quantum systems remains elusive. Here, we develop an experimental platform for the realization of canonical quantum chaotic Hamiltonians based on quantum simulation with synthetic lattices. We map the angular momentum projection states of an effective quantum spin onto the linear momentum states of a $^{87}$Rb Bose-Einstein condensate, which can alternatively be viewed as lattice sites in a synthetic dimension. This synthetic lattice, with local and dynamical control of tight-binding lattice parameters, enables new capabilities related to the experimental study of quantum chaos. In particular, the capabilities of our system let us tune the effective size of our spin, allowing us to illustrate how classical chaos can emerge from a discrete quantum system. Moreover, spectroscopic control over our synthetic lattice allows us to explore unique aspects of our spins dynamics by measuring the out-of-time-ordered correlation function, and enables future investigations into entirely new classes of chaotic systems.
We propose and study systems of coupled atomic wires in a perpendicular synthetic magnetic field as a platform to realize exotic phases of quantum matter. This includes (fractional) quantum Hall states in arrays of many wires inspired by the pioneeri ng work [Kane et al. PRL {bf{88}}, 036401 (2002)], as well as Meissner phases and Vortex phases in double-wires. With one continuous and one discrete spatial dimension, the proposed setup naturally complements recently realized discrete counterparts, i.e. the Harper-Hofstadter model and the two leg flux ladder, respectively. We present both an in-depth theoretical study and a detailed experimental proposal to make the unique properties of the semi-continuous Harper-Hofstadter model accessible with cold atom experiments. For the minimal setup of a double-wire, we explore how a sub-wavelength spacing of the wires can be implemented. This construction increases the relevant energy scales by at least an order of magnitude compared to ordinary optical lattices, thus rendering subtle many-body phenomena such as Lifshitz transitions in Fermi gases observable in an experimentally realistic parameter regime. For arrays of many wires, we discuss the emergence of Chern bands with readily tunable flatness of the dispersion and show how fractional quantum Hall states can be stabilized in such systems. Using for the creation of optical potentials Laguerre-Gauss beams that carry orbital angular momentum, we detail how the coupled atomic wire setups can be realized in non-planar geometries such as cylinders, discs, and tori.
355 - Xi-Wang Luo , , Chuanwei Zhang 2019
Weyl points, synthetic magnetic monopoles in the 3D momentum space, are the key features of topological Weyl semimetals. The observation of Weyl points in ultracold atomic gases usually relies on the realization of high-dimensional spin-orbit couplin g (SOC) for two pseudospin states (% textit{i.e.,} spin-1/2), which requires complex laser configurations and precise control of laser parameters, thus has not been realized in experiment. Here we propose that robust Wely points can be realized using 1D triple-well superlattices (spin-1/three-band systems) with 2D transverse SOC achieved by Raman-assisted tunnelings. The presence of the third band is responsible to the robustness of the Weyl points against system parameters (e.g., Raman laser polarization, phase, incident angle, etc.). Different from a spin-1/2 system, the non-trivial topology of Weyl points in such spin-1 system is characterized by both the spin vector and tensor textures, which can be probed using momentum-resolved Rabi spectroscopy. Our proposal provides a simple yet powerful platform for exploring Weyl physics and related high-dimensional topological phenomena using high pseudospin ultracold atoms.
More than 30 years ago, Thouless introduced the concept of a topological charge pump that would enable the robust transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transpo rted charge was shown to be quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. On a fundamental level, the quantized charge transport can be connected to a topological invariant, the Chern number, first introduced in the context of the integer quantum Hall effect. A Thouless quantum pump may therefore be regarded as a dynamical version of the integer quantum Hall effect. Here, we report on the realization of such a topological charge pump using ultracold bosonic atoms that form a Mott insulator in a dynamically controlled optical superlattice potential. By taking in-situ images of the atom cloud, we observe a quantized deflection per pump cycle. We reveal the genuine quantum nature of the pump by showing that, in contrast to ground state particles, a counterintuitive reversed deflection occurs when particles are prepared in the first excited band. Furthermore, we were able to directly demonstrate that the system undergoes a controlled topological phase transition in higher bands when tuning the superlattice parameters.
Motivated by recent experimental observations (C.V. Parker {it et al.}, Nature Physics, {bf 9}, 769 (2013)), we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system the re is no thermodynamic ground state, but there may be a long-lived steady-state, described as an eigenstate of a Floquet Hamiltonian. We calculate how scattering processes lead to a decay of the Floquet state. We map out the phase diagram of the system and find regions where the BEC is stable and regions where the BEC is unstable against atomic collisions. We show that Parker et al. perform their experiment in the stable region, which accounts for the long life-time of the condensate ($sim$ 1 second). We also estimate the scattering rate of the bosons in the region where the BEC is unstable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا