ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled Atomic Wires in a Synthetic Magnetic Field

83   0   0.0 ( 0 )
 نشر من قبل Jan Carl Budich
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and study systems of coupled atomic wires in a perpendicular synthetic magnetic field as a platform to realize exotic phases of quantum matter. This includes (fractional) quantum Hall states in arrays of many wires inspired by the pioneering work [Kane et al. PRL {bf{88}}, 036401 (2002)], as well as Meissner phases and Vortex phases in double-wires. With one continuous and one discrete spatial dimension, the proposed setup naturally complements recently realized discrete counterparts, i.e. the Harper-Hofstadter model and the two leg flux ladder, respectively. We present both an in-depth theoretical study and a detailed experimental proposal to make the unique properties of the semi-continuous Harper-Hofstadter model accessible with cold atom experiments. For the minimal setup of a double-wire, we explore how a sub-wavelength spacing of the wires can be implemented. This construction increases the relevant energy scales by at least an order of magnitude compared to ordinary optical lattices, thus rendering subtle many-body phenomena such as Lifshitz transitions in Fermi gases observable in an experimentally realistic parameter regime. For arrays of many wires, we discuss the emergence of Chern bands with readily tunable flatness of the dispersion and show how fractional quantum Hall states can be stabilized in such systems. Using for the creation of optical potentials Laguerre-Gauss beams that carry orbital angular momentum, we detail how the coupled atomic wire setups can be realized in non-planar geometries such as cylinders, discs, and tori.



قيم البحث

اقرأ أيضاً

Magnetic monopoles --- particles that behave as isolated north or south magnetic poles --- have been the subject of speculation since the first detailed observations of magnetism several hundred years ago. Numerous theoretical investigations and hith erto unsuccessful experimental searches have followed Diracs 1931 development of a theory of monopoles consistent with both quantum mechanics and the gauge invariance of the electromagnetic field. The existence of even a single Dirac magnetic monopole would have far-reaching physical consequences, most famously explaining the quantization of electric charge. Although analogues of magnetic monopoles have been found in exotic spin-ices and other systems, there has been no direct experimental observation of Dirac monopoles within a medium described by a quantum field, such as superfluid helium-3. Here we demonstrate the controlled creation of Dirac monopoles in the synthetic magnetic field produced by a spinor Bose-Einstein condensate. Monopoles are identified, in both experiments and matching numerical simulations, at the termini of vortex lines within the condensate. By directly imaging such a vortex line, the presence of a monopole may be discerned from the experimental data alone. These real-space images provide conclusive and long-awaited experimental evidence of the existence of Dirac monopoles. Our result provides an unprecedented opportunity to observe and manipulate these quantum-mechanical entities in a controlled environment.
We study the time evolution of two coupled many-body quantum systems one of which is assumed to be Bose condensed. Specifically, we consider two ultracold atomic clouds populating each two localized single-particle states, i.e. a two-component Bosoni c Josephson junction. The cold atoms cloud can retain its coherence when coupled to the condensate and displays synchronization with the latter, differing from usual entrainment. We term this effect among the ultracold and the condensed clouds as {it hybrid synchronization}. The onset of synchronization, which we observe in the evolution of average properties of both gases when increasing their coupling, is found to be related to the many-body properties of the quantum gas, e.g. condensed fraction, quantum fluctuations of the particle number differences. We discuss the effects of different initial preparations, the influence of unequal particle numbers for the two clouds, and explore the dependence on the initial quantum state, e.g. coherent state, squeezed state and Fock state, finding essentially the same phenomenology in all cases.
We propose an experimental scheme to simulate the fractionalization of particle number by using a one-dimensional spin-orbit coupled ultracold fermionic gas. The wanted spin-orbit coupling, a kink-like potential, and a conjugation-symmetry-breaking m ass term are properly constructed by laser-atom interactions, leading to an effective low-energy relativistic Dirac Hamiltonian with a topologically nontrivial background field. The designed system supports a localized soliton excitation with a fractional particle number that is generally irrational and experimentally tunable, providing a direct realization of the celebrated generalized-Su-Schrieffer-Heeger model. In addition, we elaborate on how to detect the induced soliton mode with the FPN in the system.
Interactions between particles can be strongly altered by their environment. We demonstrate a technique for modifying interactions between ultracold atoms by dressing the bare atomic states with light, creating an effective interaction of vastly incr eased range that scatters states of finite relative angular momentum at collision energies where only s-wave scattering would normally be expected. We collided two optically dressed neutral atomic Bose-Einstein condensates with equal, and opposite, momenta and observed that the usual s-wave distribution of scattered atoms was altered by the appearance of d- and g-wave contributions. This technique is expected to enable quantum simulation of exotic systems, including those predicted to support Majorana fermions.
186 - Xia-Ji Liu , P. D. Drummond 2013
Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum info rmation science. However, fermionic atoms are neutral and thus are difficult to manipulate. Here, we theoretically investigate the control of emergent Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases. We discuss (i) how to move Majorana fermions by increasing or decreasing an effective Zeeman field, which acts like a solid state control voltage gate; and (ii) how to create a pair of Majorana fermions by adding a magnetic impurity potential. We discuss the experimental realization of our control scheme in an ultracold Fermi gas of $^{40}$K atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا