ﻻ يوجد ملخص باللغة العربية
Elastically bent single-crystal Laue case diffraction crystals provide interesting new opportunities for imaging and spectroscopy applications. The diffraction properties are well understood, however, the ability to easily model the diffracted beams hinders assessment of the focal, phase and energy dispersive properties needed for many applications. This work begins to collect the elements needed to ray trace diffracted beams within bent Laue crystals for the purpose of incorporation into other powerful ray tracing applications such as SHADOW. Specifically, we address the condition in a bent Laue crystal where a cylindrically bent Laue crystal will focus all the polychromatic diffracted beams at a single location when a specific asymmetry angle condition is met for a target x-ray energy - the so-called magic condition. The focal size of the beam can be minimized, but this condition also results in excellent energy-dispersive properties. The conceptual and mathematical aspects of this interesting focusing and energy dispersive phenomenon is discussed.
We demonstrate experimentally and theoretically that a nanoscale hollow channel placed centrally in the solid glass core of a photonic crystal fiber strongly enhances the cylindrical birefringence (the modal index difference between radially and azim
Thick diffractive optical elements offer a promising way to achieve focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than about 0.1 nm. Efficient focusing requires that these are fabricated with structures that vary
In the context of the LAUE project devoted to build a long focal length focusing optics for soft gamma-ray astronomy (70/100 keV to $>$600 keV), we present results of simulation of a Laue lens, based on bent crystals in different assembling configura
In the context of Laue project for focusing hard X-/ soft gamma-rays, an entire Laue lens, using bent Ge(111) crystal tiles, with 40 meters curvature radius, is simulated with a focal length of 20 meters. The focusing energy band is between 80 keV an
Reducing a set of diverse bulk-optic-based optical components to a single ultrathin and compact element that enables the same complex functionality has become an emerging research area, propelling further integration and miniaturization in photonics.