ﻻ يوجد ملخص باللغة العربية
The convention standard for object detection uses a bounding box to represent each individual object instance. However, it is not practical in the industry-relevant applications in the context of warehouses due to severe occlusions among groups of instances of the same categories. In this paper, we propose a new task, ie, simultaneously object localization and counting, abbreviated as Locount, which requires algorithms to localize groups of objects of interest with the number of instances. However, there does not exist a dataset or benchmark designed for such a task. To this end, we collect a large-scale object localization and counting dataset with rich annotations in retail stores, which consists of 50,394 images with more than 1.9 million object instances in 140 categories. Together with this dataset, we provide a new evaluation protocol and divide the training and testing subsets to fairly evaluate the performance of algorithms for Locount, developing a new benchmark for the Locount task. Moreover, we present a cascaded localization and counting network as a strong baseline, which gradually classifies and regresses the bounding boxes of objects with the predicted numbers of instances enclosed in the bounding boxes, trained in an end-to-end manner. Extensive experiments are conducted on the proposed dataset to demonstrate its significance and the analysis discussions on failure cases are provided to indicate future directions. Dataset is available at https://isrc.iscas.ac.cn/gitlab/research/locount-dataset.
Video object detection (VID) has been vigorously studied for years but almost all literature adopts a static accuracy-based evaluation, i.e., average precision (AP). From a robotic perspective, the importance of recall continuity and localization sta
DETR is a recently proposed Transformer-based method which views object detection as a set prediction problem and achieves state-of-the-art performance but demands extra-long training time to converge. In this paper, we investigate the causes of the
Recent advances in semi-supervised object detection (SSOD) are largely driven by consistency-based pseudo-labeling methods for image classification tasks, producing pseudo labels as supervisory signals. However, when using pseudo labels, there is a l
Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundament
One-stage object detectors rely on a point feature to predict the detection results. However, the point feature often lacks the information of the whole object, thereby leading to a misalignment between the object and the point feature. Meanwhile, th