ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking Object Detection in Retail Stores

100   0   0.0 ( 0 )
 نشر من قبل Yuanqiang Cai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The convention standard for object detection uses a bounding box to represent each individual object instance. However, it is not practical in the industry-relevant applications in the context of warehouses due to severe occlusions among groups of instances of the same categories. In this paper, we propose a new task, ie, simultaneously object localization and counting, abbreviated as Locount, which requires algorithms to localize groups of objects of interest with the number of instances. However, there does not exist a dataset or benchmark designed for such a task. To this end, we collect a large-scale object localization and counting dataset with rich annotations in retail stores, which consists of 50,394 images with more than 1.9 million object instances in 140 categories. Together with this dataset, we provide a new evaluation protocol and divide the training and testing subsets to fairly evaluate the performance of algorithms for Locount, developing a new benchmark for the Locount task. Moreover, we present a cascaded localization and counting network as a strong baseline, which gradually classifies and regresses the bounding boxes of objects with the predicted numbers of instances enclosed in the bounding boxes, trained in an end-to-end manner. Extensive experiments are conducted on the proposed dataset to demonstrate its significance and the analysis discussions on failure cases are provided to indicate future directions. Dataset is available at https://isrc.iscas.ac.cn/gitlab/research/locount-dataset.



قيم البحث

اقرأ أيضاً

Video object detection (VID) has been vigorously studied for years but almost all literature adopts a static accuracy-based evaluation, i.e., average precision (AP). From a robotic perspective, the importance of recall continuity and localization sta bility is equal to that of accuracy, but the AP is insufficient to reflect detectors performance across time. In this paper, non-reference assessments are proposed for continuity and stability based on object tracklets. These temporal evaluations can serve as supplements to static AP. Further, we develop an online tracklet refinement for improving detectors temporal performance through short tracklet suppression, fragment filling, and temporal location fusion. In addition, we propose a small-overlap suppression to extend VID methods to single object tracking (SOT) task so that a flexible SOT-by-detection framework is then formed. Extensive experiments are conducted on ImageNet VID dataset and real-world robotic tasks, where the superiority of our proposed approaches are validated and verified. Codes will be publicly available.
DETR is a recently proposed Transformer-based method which views object detection as a set prediction problem and achieves state-of-the-art performance but demands extra-long training time to converge. In this paper, we investigate the causes of the optimization difficulty in the training of DETR. Our examinations reveal several factors contributing to the slow convergence of DETR, primarily the issues with the Hungarian loss and the Transformer cross attention mechanism. To overcome these issues we propose two solutions, namely, TSP-FCOS (Transformer-based Set Prediction with FCOS) and TSP-RCNN (Transformer-based Set Prediction with RCNN). Experimental results show that the proposed methods not only converge much faster than the original DETR, but also significantly outperform DETR and other baselines in terms of detection accuracy.
Recent advances in semi-supervised object detection (SSOD) are largely driven by consistency-based pseudo-labeling methods for image classification tasks, producing pseudo labels as supervisory signals. However, when using pseudo labels, there is a l ack of consideration in localization precision and amplified class imbalance, both of which are critical for detection tasks. In this paper, we introduce certainty-aware pseudo labels tailored for object detection, which can effectively estimate the classification and localization quality of derived pseudo labels. This is achieved by converting conventional localization as a classification task followed by refinement. Conditioned on classification and localization quality scores, we dynamically adjust the thresholds used to generate pseudo labels and reweight loss functions for each category to alleviate the class imbalance problem. Extensive experiments demonstrate that our method improves state-of-the-art SSOD performance by 1-2% and 4-6% AP on COCO and PASCAL VOC, respectively. In the limited-annotation regime, our approach improves supervised baselines by up to 10% AP using only 1-10% labeled data from COCO.
114 - Xue Yang , Junchi Yan , Qi Ming 2021
Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundament al approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach. Codes are available at https://github.com/yangxue0827/RotationDetection.
141 - Yang Yang , Min Li , Bo Meng 2021
One-stage object detectors rely on a point feature to predict the detection results. However, the point feature often lacks the information of the whole object, thereby leading to a misalignment between the object and the point feature. Meanwhile, th e classification and regression tasks are sensitive to different object regions, but their features are spatially aligned. Both of these two problems hinder the detection performance. In order to solve these two problems, we propose a simple and plug-in operator that can generate aligned and disentangled features for each task, respectively, without breaking the fully convolutional manner. By predicting two task-aware point sets that are located in each sensitive region, the proposed operator can align the point feature with the object and disentangle the two tasks from the spatial dimension. We also reveal an interesting finding of the opposite effect of the long-range skip connection for classification and regression. On the basis of the Object-Aligned and Task-disentangled operator (OAT), we propose OAT-Net, which explicitly exploits point-set features for accurate detection results. Extensive experiments on the MS-COCO dataset show that OAT can consistently boost different state-of-the-art one-stage detectors by $sim$2 AP. Notably, OAT-Net with Res2Net-101-DCN backbone achieves 53.7 AP on the COCO test-dev.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا