ﻻ يوجد ملخص باللغة العربية
We present an analog of the phenomenon of orthogonality catastrophe in quantum many body systems subject to a local dissipative impurity. We show that the fidelity $F(t)$, giving a measure for distance of the time-evolved state from the initial one, displays a universal scaling form $F(t)propto t^theta e^{-gamma t}$, when the system supports long range correlations, in a fashion reminiscent of traditional instances of orthogonality catastrophe in condensed matter. An exponential fall-off at rate $gamma$ signals the onset of environmental decoherence, which is critically slowed down by the additional algebraic contribution to the fidelity. This picture is derived within a second order cumulant expansion suited for Liouvillian dynamics, and substantiated for the one-dimensional transverse field quantum Ising model subject to a local dephasing jump operator, as well as for XY and XX quantum spin chains, and for the two dimensional Bose gas deep in the superfluid phase with local particle heating. Our results hint that local sources of dissipation can be used to inspect real-time correlations and to induce a delay of decoherence in open quantum many body systems.
We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are
We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and linearly in time, driven across the cr
The probability that a particle will stick to a surface is fundamental to a variety of processes in surface science, including catalysis, epitaxial growth, and corrosion. At ultralow energies, how particles scatter or stick to a surface affects the p
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) th
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea