ترغب بنشر مسار تعليمي؟ اضغط هنا

On-sky calibration of a SKA1-low station in the presence of mutual coupling

97   0   0.0 ( 0 )
 نشر من قبل Josef Borg Mr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper deals with the calibration of the analogue chains of a Square Kilometre Array (SKA) phased aperture array station, using embedded element patterns (one per antenna in the array, thus accounting for the full effects of mutual coupling) or average element patterns to generate model visibilities. The array is composed of 256 log-periodic dipole array antennas. A simulator capable of generating such per-baseline model visibility correlation matrices was implemented, which allowed for a direct comparison of calibration results using StEFCal (Statistically Efficient and Fast Calibration) with both pattern types. Calibrating the array with StEFCal using simulator-generated model visibilities was successful and thus constitutes a possible routine for calibration of an SKA phase aperture array station. In addition, results indicate that there was no significant advantage in calibrating with embedded element patterns, with StEFCal successfully retrieving similar per-element coefficients with model visibilities generated with either pattern type. This can be of significant importance for mitigating computational costs for calibration, particularly for the consideration of real-time calibration strategies. Data from the AAVS-1 (Aperture Array Verification System 1) prototype station in Western Australia was used for demonstration purposes.

قيم البحث

اقرأ أيضاً

Frequency-domain multiplexing (fMux) is an established technique for the readout of large arrays of transition edge sensor (TES) bolometers. Each TES in a multiplexing module has a unique AC voltage bias that is selected by a resonant filter. This sc heme enables the operation and readout of multiple bolometers on a single pair of wires, reducing thermal loading onto sub-Kelvin stages. The current receiver on the South Pole Telescope, SPT-3G, uses a 68x fMux system to operate its large-format camera of $sim$16,000 TES bolometers. We present here the successful implementation and performance of the SPT-3G readout as measured on-sky. Characterization of the noise reveals a median pair-differenced 1/f knee frequency of 33 mHz, indicating that low-frequency noise in the readout will not limit SPT-3Gs measurements of sky power on large angular scales. Measurements also show that the median readout white noise level in each of the SPT-3G observing bands is below the expectation for photon noise, demonstrating that SPT-3G is operating in the photon-noise-dominated regime.
Transition Radiation (TR) plays an important role in particle identification in high-energy physics and its characteristics provide a feasible method of energy calibration in the energy range up to 10 TeV, which is of interest for dark matter searche s in cosmic rays. In a Transition Radiation Detector (TRD), the TR signal is superimposed onto the ionization energy loss signal induced by incident charged particles. In order to make the TR signal stand out from the background of ionization energy loss in a significant way, we optimized both the radiators and the detector. We have designed a new prototype of regular radiator optimized for a maximal TR photon yield, combined with the Side-On TRD which is supposed to improve the detection efficiency of TR. We started a test beam experiment with the Side-On TRD at Conseil Europ{e}en pour la Recherche Nucl{e}aire (CERN), and found that the experimental data is consistent with the simulation results.
The AGILE scientific instrument has been calibrated with a tagged $gamma$-ray beam at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali di Frascati (LNF). The goal of the calibration was the measure of the Point Spread Function (PSF) as a function of the photon energy and incident angle and the validation of the Monte Carlo (MC) simulation of the silicon tracker operation. The calibration setup is described and some preliminary results are presented.
This document was submitted as part of the SKA Low Frequency Aperture Array Critical Design Review describing the electromagnetic design of the SKA1-LOW antenna that took place between 2013 and 2018. The SKA1 LOW antenna has been developed over the last decade. Since 2011 an antenna of the type Log-Periodic Antenna that is now in its 4th iteration, SKALA4 (SKA Log-periodic Antenna v4), has been developed and was the selected candidate for SKA1-LOW after the Cost Control project efforts of 2017. This document describes the electromagnetic design of the antenna. In the submission for the antenna selection process, a detailed description of the antenna performance can be found. The Field Node Detailed Design Document, also submitted for the SKA LFAA Critical Design Review, presents a detailed design of the mechanics and the LNA as well.
The Gemini Planet Imager (GPI) entered on-sky commissioning phase, and had its First Light at the Gemini South telescope in November 2013. Meanwhile, the fast loops for atmospheric correction of the Extreme Adaptive Optics (XAO) system have been clos ed on many dozen stars at different magnitudes (I=4-8), elevation angles and a variety of seeing conditions, and a stable loop performance was achieved from the beginning. Ultimate contrast performance requires a very low residual wavefront error (design goal 60 nm RMS), and optimization of the planet finding instrument on different ends has just begun to deepen and widen its dark hole region. Laboratory raw contrast benchmarks are in the order of 10^-6 or smaller. In the telescope environment and in standard operations new challenges are faced (changing gravity, temperature, vibrations) that are tackled by a variety of techniques such as Kalman filtering, open-loop models to keep alignment to within 5 mas, speckle nulling, and a calibration unit (CAL). The CAL unit was especially designed by the Jet Propulsion Laboratory to control slowly varying wavefront errors at the focal plane of the apodized Lyot coronagraph by the means of two wavefront sensors: 1) a 7x7 low order Shack-Hartmann SH wavefront sensor (LOWFS), and 2) a special Mach-Zehnder interferometer for mid-order spatial frequencies (HOWFS) - atypical in that the beam is split in the focal plane via a pinhole but recombined in the pupil plane with a beamsplitter. The original design goal aimed for sensing and correcting on a level of a few nm which is extremely challenging in a telescope environment. This paper focuses on non-common path low order wavefront correction as achieved through the CAL unit on sky. We will present the obtained results as well as explain challenges that we are facing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا