ﻻ يوجد ملخص باللغة العربية
High dispersion spectroscopy of brown dwarfs and exoplanets enables exciting science cases, e.g., mapping surface inhomogeneity and measuring spin rate. Here, we present $L$ band observations of HR 8799 c using Keck NIRSPEC (R=15,000) in adaptive optics (AO) mode (NIRSPAO). We search for molecular species (H$_2$O and CH$_4$) in the atmosphere of HR 8799 c with a template matching method, which involves cross correlation between reduced spectrum and a template spectrum. We detect H$_2$O but not CH$_4$, which suggests disequilibrium chemistry in the atmosphere of HR 8799 c, and this is consistent with previous findings. We conduct planet signal injection simulations to estimate the sensitivity of our AO-aided high dispersion spectroscopy observations. We conclude that $10^{-4}$ contrast can be reached in $L$ band. The sensitivity is mainly limited by the accuracy of line list used in modeling spectra and detector noise. The latter will be alleviated by the NIRSPEC upgrade.
High-contrast medium resolution spectroscopy has been used to detect molecules such as water and carbon monoxide in the atmospheres of gas giant exoplanets. In this work, we show how it can be used to derive radial velocity (RV) measurements of direc
The four directly imaged planets orbiting the star HR 8799 are an ideal laboratory to probe atmospheric physics and formation models. We present more than a decades worth of Keck/OSIRIS observations of these planets, which represent the most detailed
During the first-light run of the Gemini Planet Imager (GPI) we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previous
Using the Keck Planet Imager and Characterizer (KPIC), we obtained high-resolution (R$sim$35,000) $K$-band spectra of the four planets orbiting HR 8799. We clearly detected water{} and CO in the atmospheres of HR 8799 c, d, and e, and tentatively det
Comparing chemical abundances of a planet and the host star reveals the origin and formation path. Stellar abundance is measured with high-resolution spectroscopy. Planet abundance, on the other hand, is usually inferred from low-resolution data. For