ﻻ يوجد ملخص باللغة العربية
We assess numerical stabilization methods employed in fermion many-body quantum Monte Carlo simulations. In particular, we empirically compare various matrix decomposition and inversion schemes to gain control over numerical instabilities arising in the computation of equal-time and time-displaced Greens functions within the determinant quantum Monte Carlo (DQMC) framework. Based on this comparison, we identify a procedure based on pivoted QR decompositions which is both efficient and accurate to machine precision. The Julia programming language is used for the assessment and implementations of all discussed algorithms are provided in the open-source software library StableDQMC.jl [http://github.com/crstnbr/StableDQMC.jl].
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense ma
Quantum Monte Carlo (QMC) methods are some of the most accurate methods for simulating correlated electronic systems. We investigate the compatibility, strengths and weaknesses of two such methods, namely, diffusion Monte Carlo (DMC) and auxiliary-fi
An inhomogeneous backflow transformation for many-particle wave functions is presented and applied to electrons in atoms, molecules, and solids. We report variational and diffusion quantum Monte Carlo VMC and DMC energies for various systems and stud
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential ene
We present an overview of the variational and diffusion quantum Monte Carlo methods as implemented in the CASINO program. We particularly focus on developments made in the last decade, describing state-of-the-art quantum Monte Carlo algorithms and so