ترغب بنشر مسار تعليمي؟ اضغط هنا

Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

84   0   0.0 ( 0 )
 نشر من قبل Paul Kent
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core CPUs and GPUs.



قيم البحث

اقرأ أيضاً

67 - Carsten Bauer 2020
We assess numerical stabilization methods employed in fermion many-body quantum Monte Carlo simulations. In particular, we empirically compare various matrix decomposition and inversion schemes to gain control over numerical instabilities arising in the computation of equal-time and time-displaced Greens functions within the determinant quantum Monte Carlo (DQMC) framework. Based on this comparison, we identify a procedure based on pivoted QR decompositions which is both efficient and accurate to machine precision. The Julia programming language is used for the assessment and implementations of all discussed algorithms are provided in the open-source software library StableDQMC.jl [http://github.com/crstnbr/StableDQMC.jl].
97 - Shi Jin , Xiantao Li 2020
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential ene rgy, and the two-body terms in the Jastrow factor. In the framework of variational Monte Carlo methods, the random batch algorithm is constructed based on the over-damped Langevin dynamics, so that updating the position of each particle in an $N$-particle system only requires $mathcal{O}(1)$ operations, thus for each time step the computational cost for $N$ particles is reduced from $mathcal{O}(N^2)$ to $mathcal{O}(N)$. For diffusion Monte Carlo methods, the random batch algorithm uses an energy decomposition to avoid the computation of the total energy in the branching step. The effectiveness of the random batch method is demonstrated using a system of liquid ${}^4$He atoms interacting with a graphite surface.
We present and motivate an efficient way to include orbital dependent many--body correlations in trial wave function of real--space Quantum Monte Carlo methods for use in electronic structure calculations. We apply our new orbital--dependent backflow wave function to calculate ground state energies of the first row atoms using variational and diffusion Monte Carlo methods. The systematic overall gain of correlation energy with respect to single determinant Jastrow-Slater wave functions is competitive with the best single determinant trial wave functions currently available. The computational cost per Monte Carlo step is comparable to that of simple backflow calculations.
Quantum Monte Carlo (QMC) methods are some of the most accurate methods for simulating correlated electronic systems. We investigate the compatibility, strengths and weaknesses of two such methods, namely, diffusion Monte Carlo (DMC) and auxiliary-fi eld quantum Monte Carlo (AFQMC). The multi-determinant trial wave functions employed in both approaches are generated using the configuration interaction using a perturbative selection made iteratively (CIPSI) technique. Complete basis set full configuration interaction (CBS-FCI) energies estimated with CIPSI are used as a reference in this comparative study between DMC and AFQMC. By focusing on a set of canonical finite size solid state systems, we show that both QMC methods can be made to systematically converge towards the same energy once basis set effects and systematic biases have been removed. AFQMC shows a much smaller dependence on the trial wavefunction than DMC while simultaneously exhibiting a much larger basis set dependence. We outline some of the remaining challenges and opportunities for improving these approaches.
The parameter derivative of the expectation value of the energy, $partial E/partial p$, is a key ingredient in variational quantum Monte Carlo (VMC) wave function optimization methods. In some cases, a naive Monte Carlo estimate of this derivative su ffers from an infinite variance which inhibits the efficiency of optimization methods that rely on a stable estimate of the derivative. In this work, we derive a simple regularization of the naive estimator which is trivial to implement in existing VMC codes, has finite variance, and a negligible bias which can be extrapolated to zero bias with no extra cost. We use this estimator to construct an unbiased, finite variance estimation of $partial E/partial p$ for a multi-Slater-Jastrow trial wave function on the LiH molecule. This regularized estimator is a simple and efficient estimator of $partial E/partial p$ for VMC optimization techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا