ترغب بنشر مسار تعليمي؟ اضغط هنا

Elder-Rule-Staircodes for Augmented Metric Spaces

73   0   0.0 ( 0 )
 نشر من قبل Woojin Kim
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An augmented metric space is a metric space $(X, d_X)$ equipped with a function $f_X: X to mathbb{R}$. This type of data arises commonly in practice, e.g, a point cloud $X$ in $mathbb{R}^d$ where each point $xin X$ has a density function value $f_X(x)$ associated to it. An augmented metric space $(X, d_X, f_X)$ naturally gives rise to a 2-parameter filtration $mathcal{K}$. However, the resulting 2-parameter persistent homology $mathrm{H}_{bullet}(mathcal{K})$ could still be of wild representation type, and may not have simple indecomposables. In this paper, motivated by the elder-rule for the zeroth homology of 1-parameter filtration, we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode $mathrm{H}_0(mathcal{K})$. Specifically, if $n = |X|$, the elder-rule-staircode consists of $n$ number of staircase-like blocks in the plane. We show that if $mathrm{H}_0(mathcal{K})$ is interval decomposable, then the barcode of $mathrm{H}_0(mathcal{K})$ is equal to the elder-rule-staircode. Furthermore, regardless of the interval decomposability, the fibered barcode, the dimension function (a.k.a. the Hilbert function), and the graded Betti numbers of $mathrm{H}_0(mathcal{K})$ can all be efficiently computed once the elder-rule-staircode is given. Finally, we develop and implement an efficient algorithm to compute the elder-rule-staircode in $O(n^2log n)$ time, which can be improved to $O(n^2alpha(n))$ if $X$ is from a fixed dimensional Euclidean space $mathbb{R}^d$, where $alpha(n)$ is the inverse Ackermann function.

قيم البحث

اقرأ أيضاً

249 - Woojin Kim , Facundo Memoli 2018
Characterizing the dynamics of time-evolving data within the framework of topological data analysis (TDA) has been attracting increasingly more attention. Popular instances of time-evolving data include flocking/swarming behaviors in animals and soci al networks in the human sphere. A natural mathematical model for such collective behaviors is a dynamic point cloud, or more generally a dynamic metric space (DMS). In this paper we extend the Rips filtration stability result for (static) metric spaces to the setting of DMSs. We do this by devising a certain three-parameter spatiotemporal filtration of a DMS. Applying the homology functor to this filtration gives rise to multidimensional persistence module derived from the DMS. We show that this multidimensional module enjoys stability under a suitable generalization of the Gromov-Hausdorff distance which permits metrizing the collection of all DMSs. On the other hand, it is recognized that, in general, comparing two multidimensional persistence modules leads to intractable computational problems. For the purpose of practical comparison of DMSs, we focus on both the rank invariant or the dimension function of the multidimensional persistence module that is derived from a DMS. We specifically propose to utilize a certain metric d for comparing these invariants: In our work this d is either (1) a certain generalization of the erosion distance by Patel, or (2) a specialized version of the well known interleaving distance. We also study the computational complexity associated to both choices of d.
We study the problem of distinguishing between two distributions on a metric space; i.e., given metric measure spaces $({mathbb X}, d, mu_1)$ and $({mathbb X}, d, mu_2)$, we are interested in the problem of determining from finite data whether or not $mu_1$ is $mu_2$. The key is to use pairwise distances between observations and, employing a reconstruction theorem of Gromov, we can perform such a test using a two sample Kolmogorov--Smirnov test. A real analysis using phylogenetic trees and flu data is presented.
Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as $[0,infty)$-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call magnitude homology (in fact, it is a special sort of Hochschild homology), whose graded Euler characteristic is the magnitude. Magnitude homology of metric spaces generalizes the Hepworth--Willerton magnitude homology of graphs, and detects geometric information such as convexity.
Hepworth, Willerton, Leinster and Shulman introduced the magnitude homology groups for enriched categories, in particular, for metric spaces. The purpose of this paper is to describe the magnitude homology group of a metric space in terms of order co mplexes of posets. In a metric space, an interval (the set of points between two chosen points) has a natural poset structure, which is called the interval poset. Under additional assumptions on sizes of $4$-cuts, we show that the magnitude chain complex can be constructed using tensor products, direct sums and degree shifts from order complexes of interval posets. We give several applications. First, we show the vanishing of higher magnitude homology groups for convex subsets of the Euclidean space. Second, magnitude homology groups carry the information about the diameter of a hole. Third, we construct a finite graph whose $3$rd magnitude homology group has torsion.
In this paper we study the properties of the homology of different geometric filtered complexes (such as Vietoris-Rips, Cech and witness complexes) built on top of precompact spaces. Using recent developments in the theory of topological persistence we provide simple and natural proofs of the stability of the persistent homology of such complexes with respect to the Gromov--Hausdorff distance. We also exhibit a few noteworthy properties of the homology of the Rips and Cech complexes built on top of compact spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا