ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge exchange, from the sky to the laboratory: A method to determine state-selective cross-sections for improved modeling

61   0   0.0 ( 0 )
 نشر من قبل Gabriele Betancourt-Martinez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge exchange (CX) is a semi-resonant recombination process that can lead to spectral line emission in the X-ray band. It occurs in nearly any environment where hot plasma and cold gas interact: in the solar system, in comets and planetary atmospheres, and likely astrophysically, in, for example, supernova remnants and galaxy clusters. It also contributes to the soft X-ray background. Accurate spectral modeling of CX is thus critical to properly interpreting our astrophysical observations, but the commonly used CX models in popular spectral fitting packages often rely on scaling equations and may not accurately describe observations or laboratory measurements. This paper introduces a method that can be applied to high-resolution CX spectra to directly extract state-selective CX cross-sections for electron capture, a key parameter for properly simulating the resulting CX spectrum.

قيم البحث

اقرأ أيضاً

DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background (DXB) and to help determine the properties of the Local Hot Bub ble (LHB). The detectors are large-area thin-window proportional counters with a spectral response similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the Solar system and the assumption of approximate isotropy for the Solar wind allowed us to quantify the SWCX contribution to all 6 RASS bands (R1-R7, excepting R3). We find that the SWCX contribution at l=140 deg, b=0 deg, where the DXL path crosses the Galactic plane is 33%+-6% (statistical)+-12%(systematic) for R1, 44%+-%+-5% for R2, 18%+-12%+-11% for R4, 14%+-11%+-9% for R5, and negligible for R6 and R7 bands. Reliable models for the distribution of neutral H and He in the Solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26%+-6%+-13% for R1, 30%+-4%+-4% for R2, 8%+-5%+-5% for R4, 6%+-4%+-4% for R5, and negligible for R6 and R7.
Modern models of s-process nucleosynthesis in stars require stellar reaction rates with high precision. Most of the neutron capture cross sections in the s-process have been measured and for an increasing number of reactions the required precision is achieved. This does not necessarily mean, however, that the stellar rates are constrained equally well because only capture on the ground state of a target is measured in the laboratory. Captures on excited states can considerably contribute to stellar rates already at typical s-process temperatures. We show that the ground state contribution X to a stellar rate is the relevant measure to identify reactions which are or could be well constrained by experiments and apply it to (n,gamma) reactions in the s-process. It is further shown that the maximally possible reduction in uncertainty of a rate through determination of the g.s. cross section is directly given by X. An error analysis of X is presented and it is found that X is a robust measure with overall small uncertainties. Several specific examples (neutron capture on 79Se, 95Zr, 121Sn, 187Os, and 193Pt) are discussed in detail. The ground state contributions for a set of 411 neutron capture reactions around the s-process path are presented in a table. This allows to identify reactions which may be better constrained by experiments and such which cannot be constrained by only measuring ground state cross sections (and thus require supplementary studies). General trends and implications are discussed.
There are several different methods to determine the individual supernovae (SNe) initial explosion energy, here we derive the average or typical explosion energy of shell-type supernova remnants (SNRs) in a particular way. By solving a group of equat ions pertaining to shell-type SNRs at the same stage we obtained some physical parameters, e.g. the distance ($d$), evolved age ($t$), etc.. Assuming series of different SN initial explosion energies ranging from $10^{48}$ ergs to $10^{53}$ ergs, we derived series of distance and age parameters with which compared already known ones. Thus the most likely value of the SNe initial explosion energy is obtained when the deviation is least, which equals to about $10^{51}$ ergs, in good agreement with the undertook value.
We have measured pion single charge exchange differential cross sections on the proton at 27.5 MeV incident $pi^-$ kinetic energy in the center of momentum angular range between $0^circ$ and $55^circ$. The extracted cross sections are compared with p redictions of the standard pion-nucleon partial wave analysis and found to be in excellent agreement.
The reported observations of an unidentified X-ray line feature at $sim$3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the emph{K}-shell X-ray spectra of highly ionized bare sulfur i ons following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produce $mathrm{S}^{16+}$ and $mathrm{S}^{15+}$ ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchanged-induced X-ray feature at the Lyman series limit (3.47 $pm$ 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu and Kaastra (A & A textbf{584}, {L11} (2015)).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا