ﻻ يوجد ملخص باللغة العربية
We take into account two further physical models which play an utmost importance in the framework of Analogue Gravity. We first consider Bose--Einstein condensates (BEC) and then surface gravity waves in water. Our approach is based on the use of the master equation we introduced in a previous work. A more complete analysis of the singular perturbation problem involved, with particular reference to the behavior in the neighbourhood of the (real) turning point and its connection with the WKB approximation, allows us to verify the thermal character of the particle production process. Furthermore, we can provide a simple scheme apt to calculate explicitly the greybody factors in the case of BEC and surface waves. This corroborates the improved approach we proposed for studying the analogue Hawking effect in the usual limit of small dispersive effects.
We consider further on the problem of the analogue Hawking radiation. We propose a fourth order ordinary differential equation, which allows to discuss the problem of Hawking radiation in analogue gravity in a unified way, encompassing fluids and die
Quadratic polynomially deformed $su(1,1)$ and $su(2)$ algebras are utilised in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models
Hawking radiation, the spontaneous emission of thermal photons from an event horizon, is one of the most intriguing and elusive predictions of field theory in curved spacetimes. A formally analogue phenomenon occurs at the supersonic transition of a
We consider the geodesic equation in impulsive pp-wave space-times in Rosen form, where the metric is of Lipschitz regularity. We prove that the geodesics (in the sense of Caratheodory) are actually continuously differentiable, thereby rigorously jus
In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation. The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the effect arises from the classical