ﻻ يوجد ملخص باللغة العربية
In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation. The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the effect arises from the classical correlation of noise. We demonstrate this idea with a simple experiment on water waves where we see the first indications of a Planck spectrum in the correlation energy.
We study the estimation of parameters in a quantum metrology scheme based on entangled many-body Unruh-DeWitt detectors. It is found that the precision for the estimation of Unruh effect can be enhanced via initial state preparations and parameter se
We aim to build a simple model of a gas with temperature ($T$) in thermal equilibrium with a black-body that plays the role of the adiabatically expanding universe, so that each particle of such a gas mimics a kind of particle (quantum) of dark energ
One of the primary reasons behind the difficulty in observing the Unruh effect is that for achievable acceleration scales the finite temperature effects are significant only for the low frequency modes of the field. Since the density of field modes f
We consider further on the problem of the analogue Hawking radiation. We propose a fourth order ordinary differential equation, which allows to discuss the problem of Hawking radiation in analogue gravity in a unified way, encompassing fluids and die
We study the anti-Unruh effect for an entangled quantum state in reference to the counterintuitive cooling previously pointed out for an accelerated detector coupled to the vacuum. We show that quantum entanglement for an initially entangled (spaceli