ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective field theory for triaxially deformed odd-mass nuclei

119   0   0.0 ( 0 )
 نشر من قبل Qibo Chen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The effective field theory for collective rotations of triaxially deformed nuclei is generalized to odd-mass nuclei by including the angular momentum of the valence nucleon as an additional degree of freedom. The Hamiltonian is constructed up to next-to-leading order within the effective field theory formalism. The applicability of this Hamiltonian is examined by describing the wobbling bands observed in the lutetium isotopes $^{161,163,165,167}$Lu. It is found that by taking into account the next-to-leading order corrections, quartic in the rotor angular momentum, the wobbling energies $E_{textrm{wob}}$ and spin-rotational frequency relations $omega(I)$ are better described than with the leading order Hamiltonian.



قيم البحث

اقرأ أيضاً

We develop an effective field theory (EFT) for deformed odd-mass nuclei. These are described as an axially symmetric core to which a nucleon is coupled. In the coordinate system fixed to the core the nucleon is subject to an axially symmetric potenti al. Power counting is based on the separation of scales between low-lying rotations and higher-lying states of the core. In leading order, core and nucleon are coupled by universal derivative terms. These comprise a covariant derivative and gauge potentials which account for Coriolis forces and relate to Berry-phase phenomena. At leading order, the EFT combines the particle-rotor and Nilsson models. We work out the EFT up to next-to-leading order and illustrate the results in $^{239}$Pu and $^{187}$Os. At leading order, odd-mass nuclei with rotational band heads that are close in energy and differ by one unit of angular momentum are triaxially deformed. For band heads that are well separated in energy, triaxiality becomes a subleading effect. The EFT developed in this paper presents a model-independent approach to the particle-rotor system that is capable of systematic improvement.
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections ar e computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
311 - N.Barnea , L.Contessi , D. Gazit 2013
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron and triton LQCD energies at $m_{pi}approx 800$ MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and 6 ground states.
Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu-Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu-Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band.
359 - M. Hilt , T. Bauer , S. Scherer 2017
We calculate the form factors of the electromagnetic nucleon-to-$Delta$-resonance transition to third chiral order in manifestly Lorentz-invariant chiral effective field theory. For the purpose of generating a systematic power counting, the complex-m ass scheme is applied in combination with the small-scale expansion. We fit the results to available empirical data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا