ترغب بنشر مسار تعليمي؟ اضغط هنا

Endoscopy disease detection challenge 2020

157   0   0.0 ( 0 )
 نشر من قبل Sharib Ali Dr.
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Whilst many technologies are built around endoscopy, there is a need to have a comprehensive dataset collected from multiple centers to address the generalization issues with most deep learning frameworks. What could be more important than disease detection and localization? Through our extensive network of clinical and computational experts, we have collected, curated and annotated gastrointestinal endoscopy video frames. We have released this dataset and have launched disease detection and segmentation challenge EDD2020 https://edd2020.grand-challenge.org to address the limitations and explore new directions. EDD2020 is a crowd sourcing initiative to test the feasibility of recent deep learning methods and to promote research for building robust technologies. In this paper, we provide an overview of the EDD2020 dataset, challenge tasks, evaluation strategies and a short summary of results on test data. A detailed paper will be drafted after the challenge workshop with more detailed analysis of the results.



قيم البحث

اقرأ أيضاً

This paper reviews the NTIRE 2020 challenge on video quality mapping (VQM), which addresses the issues of quality mapping from source video domain to target video domain. The challenge includes both a supervised track (track 1) and a weakly-supervise d track (track 2) for two benchmark datasets. In particular, track 1 offers a new Internet video benchmark, requiring algorithms to learn the map from more compressed videos to less compressed videos in a supervised training manner. In track 2, algorithms are required to learn the quality mapping from one device to another when their quality varies substantially and weakly-aligned video pairs are available. For track 1, in total 7 teams competed in the final test phase, demonstrating novel and effective solutions to the problem. For track 2, some existing methods are evaluated, showing promising solutions to the weakly-supervised video quality mapping problem.
Endoscopic artifacts are a core challenge in facilitating the diagnosis and treatment of diseases in hollow organs. Precise detection of specific artifacts like pixel saturations, motion blur, specular reflections, bubbles and debris is essential for high-quality frame restoration and is crucial for realizing reliable computer-assisted tools for improved patient care. At present most videos in endoscopy are currently not analyzed due to the abundant presence of multi-class artifacts in video frames. Through the endoscopic artifact detection (EAD 2019) challenge, we address this key bottleneck problem by solving the accurate identification and localization of endoscopic frame artifacts to enable further key quantitative analysis of unusable video frames such as mosaicking and 3D reconstruction which is crucial for delivering improved patient care. This paper summarizes the challenge tasks and describes the dataset and evaluation criteria established in the EAD 2019 challenge.
Identifying and locating diseases in chest X-rays are very challenging, due to the low visual contrast between normal and abnormal regions, and distortions caused by other overlapping tissues. An interesting phenomenon is that there exist many simila r structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes. This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists. Aimed at improving the performance of existing detection methods, we propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals. First of all, under the guidance of the spine line, the spatial transformer network is employed to extract local contralateral patches, which can provide valuable context information for disease proposals. Then, we build up a specific module, based on both additive and subtractive operations, to fuse the features of the disease proposal and the contralateral patch. Our method can be integrated into both fully and weakly supervised disease detection frameworks. It achieves 33.17 AP50 on a carefully annotated private chest X-ray dataset which contains 31,000 images. Experiments on the NIH chest X-ray dataset indicate that our method achieves state-of-the-art performance in weakly-supervised disease localization.
This paper reviews the second AIM realistic bokeh effect rendering challenge and provides the description of the proposed solutions and results. The participating teams were solving a real-world bokeh simulation problem, where the goal was to learn a realistic shallow focus technique using a large-scale EBB! bokeh dataset consisting of 5K shallow / wide depth-of-field image pairs captured using the Canon 7D DSLR camera. The participants had to render bokeh effect based on only one single frame without any additional data from other cameras or sensors. The target metric used in this challenge combined the runtime and the perceptual quality of the solutions measured in the user study. To ensure the efficiency of the submitted models, we measured their runtime on standard desktop CPUs as well as were running the models on smartphone GPUs. The proposed solutions significantly improved the baseline results, defining the state-of-the-art for practical bokeh effect rendering problem.
Training a deep neural network is an optimization problem with four main ingredients: the design of the deep neural network, the per-sample loss function, the population loss function, and the optimizer. However, methods developed to compete in recen t BraTS challenges tend to focus only on the design of deep neural network architectures, while paying less attention to the three other aspects. In this paper, we experimented with adopting the opposite approach. We stuck to a generic and state-of-the-art 3D U-Net architecture and experimented with a non-standard per-sample loss function, the generalized Wasserstein Dice loss, a non-standard population loss function, corresponding to distributionally robust optimization, and a non-standard optimizer, Ranger. Those variations were selected specifically for the problem of multi-class brain tumor segmentation. The generalized Wasserstein Dice loss is a per-sample loss function that allows taking advantage of the hierarchical structure of the tumor regions labeled in BraTS. Distributionally robust optimization is a generalization of empirical risk minimization that accounts for the presence of underrepresented subdomains in the training dataset. Ranger is a generalization of the widely used Adam optimizer that is more stable with small batch size and noisy labels. We found that each of those variations of the optimization of deep neural networks for brain tumor segmentation leads to improvements in terms of Dice scores and Hausdorff distances. With an ensemble of three deep neural networks trained with various optimization procedures, we achieved promising results on the validation dataset of the BraTS 2020 challenge. Our ensemble ranked fourth out of the 693 registered teams for the segmentation task of the BraTS 2020 challenge.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا