ﻻ يوجد ملخص باللغة العربية
Entanglement in a pure state of a many-body system can be characterized by the Renyi entropies $S^{(alpha)}=lntextrm{tr}(rho^alpha)/(1-alpha)$ of the reduced density matrix $rho$ of a subsystem. These entropies are, however, difficult to access experimentally and can typically be determined for small systems only. Here we show that for free fermionic systems in a Gaussian state and with particle number conservation, $ln S^{(2)}$ can be tightly bound by the much easier accessible Renyi number entropy $S^{(2)}_N=-ln sum_n p^2(n)$ which is a function of the probability distribution $p(n)$ of the total particle number in the considered subsystem only. A dynamical growth in entanglement, in particular, is therefore always accompanied by a growth---albeit logarithmically slower---of the number entropy. We illustrate this relation by presenting numerical results for quenches in non-interacting one-dimensional lattice models including disorder-free, Anderson-localized, and critical systems with off-diagonal disorder.
We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, e
We propose a method of computing and studying entanglement quantities in non-Hermitian systems by use of a biorthogonal basis. We find that the entanglement spectrum characterizes the topological properties in terms of the existence of mid-gap states
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to s
In this paper we apply the multicanonical method of statistical physics on the number-partitioning problem (NPP). This problem is a basic NP-hard problem from computer science, and can be formulated as a spin-glass problem. We compute the spectral de