ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum coarse-grained entropy and thermalization in closed systems

244   0   0.0 ( 0 )
 نشر من قبل Dominik \\v{S}afr\\'anek
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, even those that do not commute with each other, without losing any of its properties. It is well-defined out of equilibrium, and for some coarse-grainings it generically rises to the correct thermodynamic value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions as special cases, it has interesting information-theoretic interpretations, and mathematical properties -- such as extensivity and upper and lower bounds -- suitable for an entropy. Here we describe and provide proofs for many of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second thermodynamical law in quantum mechanics.



قيم البحث

اقرأ أيضاً

We extend classical coarse-grained entropy, commonly used in many branches of physics, to the quantum realm. We find two coarse-grainings, one using measurements of local particle numbers and then total energy, and the second using local energy measu rements, which lead to an entropy that is defined outside of equilibrium, is in accord with the thermodynamic entropy for equilibrium systems, and reaches the thermodynamic entropy in the long-time limit, even in genuinely isolated quantum systems. This answers the long-standing conceptual problem, as to which entropy is relevant for the formulation of the second thermodynamic law in closed quantum systems. This entropy could be in principle measured, especially now that experiments on such systems are becoming feasible.
In statistical mechanics, a small system exchanges conserved quantities---heat, particles, electric charge, etc.---with a bath. The small system thermalizes to the canonical ensemble, or the grand canonical ensemble, etc., depending on the conserved quantities. The conserved quantities are represented by operators usually assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small systems long-time state was dubbed ``the non-Abelian thermal state (NATS). We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which form the system of interest. The conserved quantities manifest as spin components. Heisenberg interactions push the conserved quantities between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting conserved quantities from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter.
Relaxation of few-body quantum systems can strongly depend on the initial state when the systems semiclassical phase space is mixed, i.e., regions of chaotic motion coexist with regular islands. In recent years, there has been much effort to understa nd the process of thermalization in strongly interacting quantum systems that often lack an obvious semiclassical limit. Time-dependent variational principle (TDVP) allows to systematically derive an effective classical (nonlinear) dynamical system by projecting unitary many-body dynamics onto a manifold of weakly-entangled variational states. We demonstrate that such dynamical systems generally possess mixed phase space. When TDVP errors are small, the mixed phase space leaves a footprint on the exact dynamics of the quantum model. For example, when the system is initialized in a state belonging to a stable periodic orbit or the surrounding regular region, it exhibits persistent many-body quantum revivals. As a proof of principle, we identify new types of quantum many-body scars, i.e., initial states that lead to long-time oscillations in a model of interacting Rydberg atoms in one and two dimensions. Intriguingly, the initial states that give rise to most robust revivals are typically entangled states. On the other hand, even when TDVP errors are large, as in the thermalizing tilted-field Ising model, initializing the system in a regular region of phase space leads to slowdown of thermalization. Our work establishes TDVP as a method for identifying interacting quantum systems with anomalous dynamics in arbitrary dimensions. Moreover, the mixed-phase space classical variational equations allow to find slowly-thermalizing initial conditions in interacting models. Our results shed light on a link between classical and quantum chaos, pointing towards possible extensions of classical Kolmogorov-Arnold-Moser theorem to quantum systems.
Thermalization has been shown to occur in a number of closed quantum many-body systems, but the description of the actual thermalization dynamics is prohibitively complex. Here, we present a model - in one and two dimensions - for which we can analyt ically show that the evolution into thermal equilibrium is governed by a Fokker-Planck equation derived from the underlying quantum dynamics. Our approach does not rely on a formal distinction of weakly coupled bath and system degrees of freedom. The results show that transitions within narrow energy shells lead to a dynamics which is dominated by entropy and establishes detailed balance conditions that determine both the eventual equilibrium state and the non-equilibrium relaxation to it.
We develop the framework of classical Observational entropy, which is a mathematically rigorous and precise framework for non-equilibrium thermodynamics, explicitly defined in terms of a set of observables. Observational entropy can be seen as a gene ralization of Boltzmann entropy to systems with indeterminate initial conditions, and describes the knowledge achievable about the system by a macroscopic observer with limited measurement capabilities; it becomes Gibbs entropy in the limit of perfectly fine-grained measurements. This quantity, while previously mentioned in the literature, has been investigated in detail only in the quantum case. We describe this framework reasonably pedagogically, then show that in this framework, certain choices of coarse-graining lead to an entropy that is well-defined out of equilibrium, additive on independent systems, and that grows towards thermodynamic entropy as the system reaches equilibrium, even for systems that are genuinely isolated. Choosing certain macroscopic regions, this dynamical thermodynamic entropy measures how close these regions are to thermal equilibrium. We also show that in the given formalism, the correspondence between classical entropy (defined on classical phase space) and quantum entropy (defined on Hilbert space) becomes surprisingly direct and transparent, while manifesting differences stemming from non-commutativity of coarse-grainings and from non-existence of a direct classical analogue of quantum energy eigenstates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا