ﻻ يوجد ملخص باللغة العربية
We extend the AROW regression algorithm developed by Vaits and Crammer in [VC11] to handle synchronous mini-batch updates and apply it to stock return prediction. By design, the model should be more robust to noise and adapt better to non-stationarity compared to a simple rolling regression. We empirically show that the new model outperforms more classical approaches by backtesting a strategy on S&P500 stocks.
In recent years, hyperparameter optimization (HPO) has become an increasingly important issue in the field of machine learning for the development of more accurate forecasting models. In this study, we explore the potential of HPO in modeling stock r
The validity of the Efficient Market Hypothesis has been under severe scrutiny since several decades. However, the evidence against it is not conclusive. Artificial Neural Networks provide a model-free means to analize the prediction power of past re
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets
We present a simple dynamical model of stock index returns which is grounded on the ability of the Cyclically Adjusted Price Earning (CAPE) valuation ratio devised by Robert Shiller to predict long-horizon performances of the market. More precisely,
We analyze the problem of the analytical characterization of the probability distribution of financial returns in the exponential Ornstein-Uhlenbeck model with stochastic volatility. In this model the prices are driven by a Geometric Brownian motion,