ﻻ يوجد ملخص باللغة العربية
We present a simple dynamical model of stock index returns which is grounded on the ability of the Cyclically Adjusted Price Earning (CAPE) valuation ratio devised by Robert Shiller to predict long-horizon performances of the market. More precisely, we discuss a discrete time dynamics in which the return growth depends on three components: i) a momentum component, naturally justified in terms of agents belief that expected returns are higher in bullish markets than in bearish ones, ii) a fundamental component proportional to the logarithmic CAPE at time zero. The initial value of the ratio determines the reference growth level, from which the actual stock price may deviate as an effect of random external disturbances, and iii) a driving component which ensures the diffusive behaviour of stock prices. Under these assumptions, we prove that for a sufficiently large horizon the expected rate of return and the expected gross return are linear in the initial logarithmic CAPE, and their variance goes to zero with a rate of convergence consistent with the diffusive behaviour. Eventually this means that the momentum component may generate bubbles and crashes in the short and medium run, nevertheless the valuation ratio remains a good reference point of future long-run returns.
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets
In recent years, hyperparameter optimization (HPO) has become an increasingly important issue in the field of machine learning for the development of more accurate forecasting models. In this study, we explore the potential of HPO in modeling stock r
We extend the AROW regression algorithm developed by Vaits and Crammer in [VC11] to handle synchronous mini-batch updates and apply it to stock return prediction. By design, the model should be more robust to noise and adapt better to non-stationarit
Using non-linear machine learning methods and a proper backtest procedure, we critically examine the claim that Google Trends can predict future price returns. We first review the many potential biases that may influence backtests with this kind of d
The validity of the Efficient Market Hypothesis has been under severe scrutiny since several decades. However, the evidence against it is not conclusive. Artificial Neural Networks provide a model-free means to analize the prediction power of past re