ﻻ يوجد ملخص باللغة العربية
A dicut in a directed graph is a cut for which all of its edges are directed to a common side of the cut. A famous theorem of Lucchesi and Younger states that in every finite digraph the least size of a set of edges meeting every non-empty dicut equals the maximum number of disjoint dicuts in that digraph. Such sets are called dijoins. Woodall conjectured a dual statement. He asked whether the maximum number of disjoint dijoins in a directed graph equals the minimum size of a non-empty dicut. We study a modification of this question where we restrict our attention to certain classes of non-empty dicuts, i.e. whether for a class $mathfrak{B}$ of dicuts of a directed graph the maximum number of disjoint sets of edges meeting every dicut in $mathfrak{B}$ equals the size of a minimum dicut in $mathfrak{B}$. In particular, we verify this questions for nested classes of finite dicuts, for the class of dicuts of minimum size, and for classes of infinite dibonds, and we investigate how this generalised setting relates to a capacitated version of this question.
A general method for constructing sharply $k$-arc-transitive digraphs, i.e. digraphs that are $k$-arc-transitive but not $(k+1)$-arc-transitive, is presented. Using our method it is possible to construct both finite and infinite examples. The infinit
We prove that every digraph of independence number at most 2 and arc-connectivity at least 2 has an out-branching $B^+$ and an in-branching $B^-$ which are arc-disjoint (we call such branchings good pair). This is best possible in terms of the arc-
A detailed description of the structure of two-ended arc-transitive digraphs is given. It is also shown that several sets of conditions, involving such concepts as Property Z, local quasi-primitivity and prime out-valency, imply that an arc-transitiv
An intersection digraph is a digraph where every vertex $v$ is represented by an ordered pair $(S_v, T_v)$ of sets such that there is an edge from $v$ to $w$ if and only if $S_v$ and $T_w$ intersect. An intersection digraph is reflexive if $S_vcap T_
Image partition regular matrices near zero generalizes many classical results of Ram- sey Theory. There are several characterizations of finite image partition regular matrices near zero. Contrast to the finite cases there are only few classes of mat