ﻻ يوجد ملخص باللغة العربية
Sensor-based human activity recognition (HAR) is now a research hotspot in multiple application areas. With the rise of smart wearable devices equipped with inertial measurement units (IMUs), researchers begin to utilize IMU data for HAR. By employing machine learning algorithms, early IMU-based research for HAR can achieve accurate classification results on traditional classical HAR datasets, containing only simple and repetitive daily activities. However, these datasets rarely display a rich diversity of information in real-scene. In this paper, we propose a novel method based on deep learning for complex HAR in the real-scene. Specially, in the off-line training stage, the AMASS dataset, containing abundant human poses and virtual IMU data, is innovatively adopted for enhancing the variety and diversity. Moreover, a deep convolutional neural network with an unsupervised penalty is proposed to automatically extract the features of AMASS and improve the robustness. In the on-line testing stage, by leveraging advantages of the transfer learning, we obtain the final result by fine-tuning the partial neural network (optimizing the parameters in the fully-connected layers) using the real IMU data. The experimental results show that the proposed method can surprisingly converge in a few iterations and achieve an accuracy of 91.15% on a real IMU dataset, demonstrating the efficiency and effectiveness of the proposed method.
Together with the rapid development of the Internet of Things (IoT), human activity recognition (HAR) using wearable Inertial Measurement Units (IMUs) becomes a promising technology for many research areas. Recently, deep learning-based methods pave
Human Activity Recognition from body-worn sensor data poses an inherent challenge in capturing spatial and temporal dependencies of time-series signals. In this regard, the existing recurrent or convolutional or their hybrid models for activity recog
Wearables are fundamental to improving our understanding of human activities, especially for an increasing number of healthcare applications from rehabilitation to fine-grained gait analysis. Although our collective know-how to solve Human Activity R
Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such
Unsupervised user adaptation aligns the feature distributions of the data from training users and the new user, so a well-trained wearable human activity recognition (WHAR) model can be well adapted to the new user. With the development of wearable s